GENERAL WASTE & RECYCLING, LLC SW-620 INDUSTRIAL WASTE LANDFILL

DEMONSTRATION OF ENGINEERING CONTROLS INCORPORATED INTO DESIGN OF A CCR LANDFILL IN A POTENTIALLY UNSTABLE AREA

Prepared For:

GENERAL WASTE & RECYCLING, LLC

Prepared by:

Northeast Technical Services, Inc. 526 Chestnut Street Virginia, Minnesota 55792

(218) 741-4290

October 4, 2017

Project Number: 6385CC

"I certify under penalty of law that this document and all attachments were prepared under my direct supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate and complete." I certify that this report has been prepared consistent with recognized and generally accepted good engineering practices and satisfies the requirements put forth in 40 CFR §257.64 'Unstable Areas.'

Evan Juhran 8-3-18

08-03-2018

Date

Evan Johnson, P.E. Geotechnical Engineer

Minnesota License No. 53648

Table of Contents

1.0	PROJECT OVERVIEW 1	
2.0	LANDFILL SETTING	
3.0	COMPLETED GEOTECHNICAL ASSESSMENTS	
	1 INITIAL GEOTECHNICAL ASSESSMENT OF LINER DESIGN	
	2 CELL A CONSTRUCTION CERTIFICATION	
3.3	3 CELL B CONSTRUCTION SUBGRADE ANALYSIS	3
4.0	FUTURE CONSTRUCTION	

Appendices

Appendix A: 2013 Initial Geotechnical Review of Proposed Industrial Landfill located near

Keewatin, MN

Appendix B: Cell B Subgrade Evaluation

References

Report: General Waste Disposal and Recovery Services Industrical Waste Landfill Cell

1A Liner and Leachate Collection System Construction Documentation Report,

Liesch – A Terracon Company (November, 2014).

General Waste Industrial Landfill – Keewatin, MN CCR Geotechnical Assessment August 3, 2018 Page 1 of 3

1.0 Project Overview

Northeast Technical Services, Inc. (NTS) is pleased to present this report for the above referenced project. Per the above mentioned regulation, any existing CCR landfill that is located in an area that is deemed to be potentially unstable must demonstrate that good engineering practice has been incorporated into the design to ensure that the integrity of the structural components of the CCR landfill liner will not be disrupted. This demonstration must be completed prior to October 17, 2018.

Because of the setting of the General Waste Industrial Landfill (the landfill) to be at least partially within a mine overburden stockpile, it is prudent to demonstrate that good engineering practice has been incorporated into the design as this location may be potentially unstable due to these human-made features.

This letter report describes the physical setting of the landfill and summarizes previously conducted investigations and how they demonstrate that proper assessment of the landfill subgrade has been completed for Cells A and B and engineering controls incorporated into the design.

2.0 Landfill Setting

The landfill is located in the southeast quarter of Section 25, Township 57N, Range 22W, an area where the topography has been highly modified by historical iron mining. The site is bounded on the north by U. S. Highway 169, and Keewatin, MN is located directly north opposite the highway. The west side of the site is bounded by a tailings basin containing hydraulic fill from Mesabi Chief Heavy Media plant which operated from 1928 to 1970 (end date is approximate) and more recently operated by Magnetation, LLC between approximate years 2011-2015. The east side of the site is bounded by Itasca County Road 571. South of the site, there is a cell phone transmission tower, an automotive salvage yard, and other terrain that review of historical photography indicates to be native landform.

The landfill design intersects a historical overburden stockpile of unconsolidated glacial deposits stripped from one of the nearby iron ore open pit mines. Stripping operations in the Keewatin vicinity mines is believed to have been started circa 1913. An air photo dated 1939 shows the stockpile was substantially completed by 1939. The primary method of placement likely consisted of constructing temporary railroads, side-dumping rail cars, and pushing the soil down inclined slopes that progressed across the site at the angle of repose. The lift heights during soil placement may be indicated by the stockpile's outer slopes, which are typically 30-40 feet. Several lifts appear to have been placed over the site with total fill depth up to about 80 feet.

General Waste Industrial Landfill – Keewatin, MN CCR Geotechnical Assessment August 3, 2018 Page 2 of 3

The landfill subgrade is expected to be located with the overburden stockpile material, approximately 20 feet above what is thought to be native ground. Review of geologic setting resources and site boreholes indicate that the underlying native material consists of a dense silty, clayey sand with glacial till that is thought to be 100-200 feet in thickness overlying bedrock.

3.0 Completed Geotechnical Assessments

3.1 Initial Geotechnical Assessment of Liner Design

During initial permitting activities, an extensive soil boring program across the proposed landfill footprint was conducted that included 23 borings with the purpose of gathering hydrogeological and geotechnical data. In addition, 4 down-hole pressuremeter tests were conducted to assess compressibility of the predominant mine overburden stockpile materials to assist with settlement predictions for the proposed landfill.

This report determined the following items to be of primary concern with regard to landfill stability and liner integrity:

- 1.) Localized settlement caused by varying surcharge loads. Because the landfill base grade is to traverse stockpile limits, there is a significant difference in surcharge (or pre-loading) of base grade soils.
- 2.) Localized settlement caused by sloping lifts of poor fill materials such as buried debris, open graded gravel, excessively soft or loose materials, organic soils. Though not explicitly observed in the boring program, area knowledge causes one to consider that a variety of materials may end up in an overburden stockpile.
- 3.) Excessive settlement caused by weak subgrade soils in the stockpile material and large loads to be applied via placed waste.

To address item 1 and 2 above for the Cell A construction, the geotechnoical assessment recommended conducting a 1 foot sub-cut of the liner subgrade, placing a geotextile fabric, and filling back to subgrade elevation with a compacted granular fill. In addition, it was recommended that detailed observation of excavated materials be conducted to assess the suitabilitity of the observed stockpiled materials for the landfill subgrade and to determine if significantly varying materials exist in placed sloping lifts.

Item 3 was addressed via conducting a predicted settlement analysis utilizing the pressurmeter test data as well as correlating blowcount data. This analysis showed that the more conservative method indicated that the expected settlement at the borehole locations would range from 3.8 to 13.4 inches of settlement. However, SB 12-03 (the location of highest expected settlement) is located on the outer extents of the perimeter berm where settlement would not likely damage liner integrity. Predicted liner settlement beneath the liner floor was found to be approximately 4 to 8 inches. It was deemed that total settlement or differential settlement across the liner should not cause over stressing or damage to the liner.

General Waste Industrial Landfill – Keewatin, MN CCR Geotechnical Assessment August 3, 2018 Page 3 of 3

3.2 Cell A Construction Certification

During construction of Cell A, testing and inspection was completed for landfill certification as well as to document soil conditions and compare to those expected from the initial geotechnical assessment.¹ Materials encountered during excavation activities to Cell A subgrade elevation agreed with those observed in the geotechnical analysis.

3.3 Cell B Construction Subgrade Analysis

While excavating for the Cell B construction, 2 on-site inspections were conducted to assess the subgrade soils and determine the applicability of the previously utilized sub-cut and geotextile placement. Analysis of the Cell B liner floor surcharge was completed, 6 test pits performed across the Cell B floor, and soil gradation analyses completed to assess soil suitability and uniformity. The findings indicated that the in-situ subgrade was sufficient for liner construction provided specific conditioning of the soils be completed. This report can be seen attached as Appendix B.

4.0 Future Construction

This certification only applies to the constructed Cell A and Cell B of the landfill facility. It is expected that similar analysis will be completed during future landfill expansions to ensure that the geotechnical concerns identified in the initial assessment of the landfill site or those identified in future development be properly assessed by a licensed professional engineer.

¹ General Waste Disposal and Recovery Services Industrical Waste Landfill Cell 1A Liner and Leachate Collection System Construction Documentation Report, Liesch – A Terracon Company (November, 2014).

Appendix A 2013 Initial Geotechnical Review

Geotechnical Review of Proposed Industrial Landfill located near Keewatin, MN

Description & Purpose

This geotechnical evaluation is being performed for a proposed Industrial Waste Disposal Facility (The "Facility") designed in compliance with Minnesota Rules 7035.2815 for Mixed Municipal Solid Waste Land Disposal facilities which require a composite liner consisting of a geosynthetic and compacted clay with a leachate collection system. The design, hydrogeologic evaluation and permit application are being submitted to the Minnesota Pollution Control Agency (MPCA) for review and approval prior to issuing a solid waste permit. The Facility will be a merchant landfill and accept a variety of industrial waste types, although the predominant wastes are expected to be lime precipitation solids, dry coal ash, slag, contaminated soils, and other wastes generated by the iron mining industry. The landfill is not a tailing basin and the containment berms are not designed to contain hydraulic fill.

The landfill is subdivided into eight cells which will be constructed and filled with waste in four phases. The first cell will be at the west end of the site, and subsequent cells will proceed eastward. The entire waste footprint is situated on an overburden stockpile. The containment berm surrounding the landfill varies in height from being cut to grade along some of the northern boundary, to fill exceeding 60 feet in height in the south-east corner. The landfill containment area will be excavated, with the liner grade ranging from about 8 to 40 feet below the existing ground surface. The maximum final grade of the cap at the center of the landfill will be approximately 100 feet above the liner grade.

Geotechnical concerns at the site include settlement of the foundation soils below the liner and containment berms, stability of the berms, and liner design. Settlement is a concern because of the existing overburden stockpile and associated abrupt changes in topography. The liner grade needs to maintain positive slope for leachate drainage; and differential settlement could tear the liner. This appendix provides recommendations concerning construction and operation to address these concerns.

Site Conditions

The site is located in the southeast quarter of Section 25, Township 57N, Range 22W, an area where the topography has been highly modified by historical iron mining. The site is bounded on the north by U. S. Highway 169, and Keewatin, MN is located directly north opposite the highway. The west site of the site is bounded by a tailings basin containing hydraulic fill from Mesabi Chief Heavy Media plant which operated from 1928 to 1970 (end date is approximate). The east side of the site is bounded by Itasca County. Road 571, and there are other overburden lean ore and blast rock stockpiles east of County Road 16. The NSPC Initial Tailings Basin is about ½ mile to the southeast of the site. South of the site, there is a cell phone transmission tower, an automotive salvage yard, and other terrain that historical photography indicates to be native landform.

The landfill site contains a historical overburden stockpile materials obtained from stripping overburden from one of the nearby open pit mines. Stripping operations in the Keewatin vicinity mines is believed to have been started circa 1913. An air photo dated 1939 shows the stockpile was essentially completed by that date. The primary method of placement likely consisted of constructing temporary railroads, side-dumping rail cars, and pushing the soil down inclined slopes that progressed across the site at the angle of repose. The lift heights during soil placement may be indicated by the stockpile's outer slopes, which are typically 30-40 feet. Several lifts appear to have been placed over the site with total fill depth up to about 80 feet.



Figure 1. Proposed Landfill Site

The land directly west of the overburden stockpile contains a tailings basin. The tailings basin retains fine tailing slurry material pumped from the Mesabi Chief Plant located to the north. Air photos from 1939 and 1947 show the tailings basin was originally a wetland area; and the 1961 air photo shows the basin in operation. There is an access road grade that separates the tailing basin from the overburden stockpile, and acted as the containment dike of the tailings basin, so that slurry was deposited against the toe of the overburden stockpile.

The aerial photography (1939, 1947, 1961 and current) indicates the land south and east of the stockpile is mostly native topography. With elevations of surrounding land and buried topsoil observed in the borings, the native ground elevation below the stockpile appears to have been mostly in the range from 1450 feet to 1460 feet. Undulations in the original ground surface were likely gradual or knocked down to lay rail in the area during placement of the stockpile. The highest elevation of the stockpile shown on the site topography is about elevation 1532. Thus, the maximum thickness of the stockpile is about 80 feet.

The County Well Index includes data for six deep borings that have been advanced into bedrock within 1.1 miles of the site. The bedrock surface is typically slate ranging in elevation from 1297 feet to 1360 feet. If the bedrock surface remains within this range beneath the stockpile, then there is a significant overburden thickness of glacial till overlying the bedrock. This glacial till is presumed to be in the range of 100 feet to 200 feet thick.

Table 1. Bedrock Borings Indicating Top of Rock Elevation

Minnesota Unique Well No.	Depth of Boring (feet)	Boring Surface Elevation (feet)	Indicated Depth of Bedrock (feet)	Bedrock Elevation (feet)	Distance From Overburden Stockpile (miles)	Approximate Direction From Site
780828	970	1455	200	1355	.4	South-Southwest
303997	311	1470	162	1308	.4	North
303998	461	1479	139	1340	.5	North
303995	755	1450	153	1297	.6	North
250275	164	1481	Not Encountered	<1317	.75	East-Northeast
303999	633	1493	133	1360	1.1	Northwest

Prior to exploration for the industrial landfill site, NTS had installed 5 monitoring wells at the site and vicinity, which are shown on the boring location diagram.

Proposed Construction

The landfill will be completed in four phases, with 8 cells, as identified on the drawings. Each cell has a north-south oriented leachate collection pipe in the center of the cell that flows north to an east-west oriented collector drain along the north boundary of the landfill. Cell A on the west end will be constructed first, and subsequent cell development will proceed eastward. Each cell and a brief description of the site grading are provided below:

<u>Cell A</u> – There is an existing mine stockpile slope about 30' in height running near the N-S boundary between cells A and B. The toe of this slope is within Cell A, but for the purpose of generalizing conditions Cell A is typically below this slope and Cell B is typically above this slope. This difference in grade between cells A and B is a concern for differential settlement. The existing grade below the cell floor and perimeter berms is typically about elevation 1488 near the north end and 1494 near the south end. This will involve about 6 feet of cut to liner grade. The perimeter berms will be about 25 feet in height. Along the west perimeter, the berm will follow the alignment of an access road that separates the mine stockpile from a hydraulic basin containing fine tailings.

<u>Cell B</u> – The existing grade below the cell floor is typically about elevation 1516 near the north end and 1534 near the south end. This will involve about 35 to 45 feet of cut to liner grade. The existing ground is near the perimeter berm crest elevation, with a couple of feet of grading at the north end and up to about 5 feet of fill at the south end. The south boundary of the perimeter berm abuts the existing landfill.

<u>Cell C</u> – The existing grade below the cell floor is typically about elevation 1516 near the north end and 1530 near the south end. This will involve about 40 feet of cut to liner grade. The existing ground is near the perimeter berm crest elevation, with a couple of feet of grading at the north end and up to about 5 feet of cut at the south end. The south boundary of the perimeter berm abuts the existing landfill.

<u>Cell D</u> - The existing grade below the cell floor is typically about elevation 1514 near the north end and 1530 near the south end. This will involve about 35 to 40 feet of cut to liner grade. The existing ground is near the north perimeter berm crest elevation, where minimal grading is required. The existing upper stockpile ends near the south end of Cell D, and the grade drops about 20 feet near the berm. The south berm will require up to about 10 feet of fill.

<u>Cell E</u> - The existing grade below the cell floor is typically about elevation 1510 near the north end and 1530 near the south end. This will involve about 35 to 40 feet of cut to liner grade. The existing ground is near the north perimeter berm crest elevation, where minimal grading is required. The existing upper stockpile also ends near

the south end of Cell E. The south berm will require up to about 25 feet of fill. The east side of the berm skirts the existing stockpile slope.

<u>Cell F</u> – Similar to cells A/B, the upper existing mine stockpile approximately separates cells E and F with a slope about 30 feet in height running near the N-S boundary. This difference in grade between cells E and F is also a concern for differential settlement. The existing grade below the cell floor and perimeter berms is typically about elevation 1480 near the north end and 1478 near the south end. This will involve about 0 to 8 feet of cut to liner grade. The perimeter berms will be about 30 - 40 feet in height.

<u>Cell G</u> – Cell G is similar to Cell F with the ground surface gently dropping to lower elevations. The liner grade will range from about 5 feet of cut in the north end to about 5 feet of fill at the south end. The perimeter berms will be about 35 feet high at the north end and about 45 feet high at the south end.

<u>Cell H</u> – The eastern boundary of cell H drops in elevation, and requires the largest fill height. The fill height near the SE corner is near 65 feet above existing grade. The liner grade is generally within about +/- 5 feet of existing grade, but the SE corner will require up to about 15 feet of fill.

Subsurface Exploration

Twenty-one soil borings were advanced at the proposed landfill for the joint purposes of collecting hydrological data and subsurface exploration for geotechnical purposes. Soil boring logs are attached at the end of this appendix.

Thirteen borings were extended with a track-mounted Geoprobe 66-DT drill rig using a percussion hammer and standard Macrocore closed piston sampling barrel. The Geoprobe borings were installed to depths indicated in the Table below. These borings were primarily installed to determine the groundwater surface at the site. Six Geoprobe holes were backfilled with cuttings and 7 (those with a listed casing elevation in Table below) remain open temporary shallow piezometers.

Table 2. Geoprobe Borings

Depth	Ground Elev	Casing Elev
21	1488	N/A
25	1481	1482.96
29	1493	1491.95
24	1485	N/A
27	1495	1497.23
31	1483	N/A
32	1473	1477.84
20	1473	1477.52
32	1495	N/A
41	1487	1489.45
15	1487	1489.32
23	1496	N/A
29	1481	N/A
	21 25 29 24 27 31 32 20 32 41 15 23	21 1488 25 1481 29 1493 24 1485 27 1495 31 1483 32 1473 20 1473 32 1495 41 1487 15 1487 23 1496

Ten borings were drilled with a CME 750 drill rig. These holes were advanced using hollow-stem auger and collecting split spoon samples and SPT data (blow counts) every five feet. Standard penetration tests were completed using an automatic hammer in accordance with ASTM D 1586, "Standard Test Method for Penetration Test and Split-Barrel Sampling of Soils." Once depth of boring neared the natural subsurface, continuous sampling was initiated in order to accurately determine the overburden-natural subsurface interface. These borings were filled with a mixture of Portland cement and bentonite grout.

Table 3. SPT Borings

Boring	Depth	Ground Elev	Depth to Native Ground	Elev. Native Ground
SB12-03	67	1511	60.0	1451
SB12-04	72	1513	>45	
SB12-07	62	1521	>62	
SB12-08	82	1534	67	1467
SB12-13	66	1521	62	1459
SB12-15	77	1529	76.5	1452.5
SB12-16	77	1521	65	1456
SB12-18D	91	1526	65	1461
SB12-19	94	1535	83	1452

For all borings, the penetration test samples were visually examined to estimate the distribution of grain sizes, plasticity, organic content, moisture condition, color, presence of lenses or seams, and apparent geologic origin. The soils were classified by type using the Unified Soil Classification System. A chart describing this classification system is attached.

Results of the field and laboratory tests were then plotted on boring logs. These logs are attached. Similar soils were grouped into strata on the logs. Please note that the strata contact lines represent approximate boundaries between soil types; the actual transition between soil types in the field may be gradual in both the horizontal and vertical directions.

<u>Pressuremeter Testing</u> – Two borings were extended near Cells A and B to check the foundation compressibility in the vicinity of the existing 30 foot stockpile slope. The pressuremeter testing was completed by American Engineering Testing. Testing data sheets are attached at the end of this appendix. The following parameters were determined from the pressuremeter testing:

Table 4. Pressuremeter Test Results

Test	Boring	Depth of Test (feet)	Surface Elevation	Test Elevation	Limit Pressure, PL (tsf)	Menard Modulus (tsf)
PM-1	SB12-26	46	1523	1477	12	72
PM-2	SB12-27	31	1523	1492	10	96
PM-3	SB12-28	10	1494	1484	10	117
PM-4	SB12-28	20	1494	1474	13	106

<u>Laboratory Testing</u> –Soil samples collected while drilling were stored in de-aired Ziploc baggies, and then placed in sealed five gallon buckets to preserve samples until laboratory tests were performed.

Laboratory tests consisted of conducting twenty-three moisture content analyses, eighteen Passing #200 sieve analyses, six grain size analyses, and two Atterberg tests. The soil samples to be tested were determined by assessing the preliminary base grade of the landfill liner, and then selecting samples below this grade. The laboratory results are attached in Appendix D.

Soil Conditions

The boring results indicate the mine stockpiles are predominantly medium dense, fine to medium grained sand with varying amounts of fines. There were some zones of stiff clay encountered, but the vast majority appears to be granular. Some zones of coarse gravel and cobbles were interpreted from blow counts, recovery data, drill action, and grout loss when backfilling holes. It is not typical for stockpiles to contain both overburden and lean ore or blast rock; but where blast rock zones occur they create "open work" gravel/cobble mixtures with open

void spaces. This "open work" material has been known to cause sinkholes within the stockpiles. There were some zones of high blows and no recovery, but these zones are consistent with gravelly zones in the overburden common to the region. Overburden stripped from a basal layer overlying bedrock likely contained richer amounts of gravel and cobbles. Statistically, the number of borings does little to define the likelihood of open work gravel in the stockpiles, and assessment of open work zones are based largely on the understood origin of the overburden stripping material and the purpose of the stockpile. It is therefore assumed that open work gravel zones may exist but are not prevalent at this site.

Drill action (as noted above) provides further evidence of the character of materials where the drilling was difficult and the blow counts were high. There were some zones where loss of return of cuttings occurred while advancing the hollow stem auger bit slowly. This was attributed to material balling up on the auger, as evidenced by extremely hot bits, indicating that the materials had been stuck in contact with the auger for a long period of time. There was no loss of cuttings return while drilling below the water table.

In general, the native sands below the buried native ground surface (generally occurring below about elevation 1445) have erratic blow counts (ranging from 30 to 180), indicating rocky material containing cobbles. As such, the relative density is difficult to infer from the SPT testing, but is inferred to be dense and highly over-consolidated

The generalized soil conditions for each landfill cell are described as follows:

<u>Cell A</u> – Borings 12-02, 12-06 and 12-11 were located on the lower mine stockpile surface in Cell A. These borings were extended 21, 29 and 27 feet in depth and all terminated within mine stockpile material. The soils consisted predominantly of clayey sand with gravel. The fines content of two laboratory tests ranged from 35 to 45%, and the material was generally plastic although not saturated. All three borings were Geoprobe borings and no data was obtained on the consistency other than visual estimates. Visual classification described the soils as moist to about 20 feet, and wet below.

Cell B – Borings 12-03, 12-07, 12-12, and 12-15 were located on the upper mine stockpile surface in Cell B. These were all hollow stem borings with SPT sampling. The upper stockpile material was encountered to depth of 25 to 30 feet in depth in borings 12-03, 12-07 and 12-15. The upper stockpile material consisted of gravelly sand, silty sand, and clayey sand, all of which were generally damp to moist and loose relative density. The lower stockpile material extending to elevation 1466 to 1473 generally consisted of medium dense clayey sand with gravel, but was silty sand in 12-03. In 12-12, the upper and lower stockpile was not separable. The northern boring 12-03 encountered black peat inferred to be the buried native ground surface at elevation 1451, and the southern boring 12-15 encountered similar line at 1452.5, while the central borings (12-07 and 12-12) did not extend to this depth. All four borings encountered a basal layer of sand, slightly silty sand, or silty sand of unknown origin overlying the buried native ground line. The basal layer may have been a third lift of mine spoil, but more likely a result of initial grading at the site to lay rail lines through the area.

Cell C – Cell C did not include any borings, but conditions can be inferred from neighboring Cells B and D.

Cell D – Borings 12-04, 12-13, and 12-18 were located on the upper mine stockpile surface in Cell D. Similar to Cell B, all noted a stratification change at 30 feet depth. The upper stockpile material varied with each boring, including slightly clayey sand, silty sand, and sandy clay. The lower stockpile included silty sand, clayey sand, and 12-04 included gravelly material as indicated by poor recovery. Cobbles are not likely as the blow counts were relatively consistent (ranging from 14 to 18) in five SPT tests through this zone. Boring 12-13 encountered a black peat layer inferred to be the buried native ground surface at elevation 1459. While the black peat was absent in borings 12-04 and 12-18 and the native ground surface is not obvious, native sands that show erratic SPT blow counts (likely from cobbles) were encountered below approximate elevations 1458 in each boring.

<u>Cell E</u> – Boring 12-19 was a hollow stem with SPT sampling extending through the upper stockpile, while boring 12-20 was a Geoprobe boring at the toe of the slope and outside the landfill boundary extending through the lower stockpile. The upper stockpile in boring 12-19 was brown to red silty sand to sandy silt with gravel (52% fines content at one sample), and the lower stockpile was grey to brown silty sand. The black peat layer, inferred to be the buried native ground surface, was encountered at elevation 1452.

<u>Cell F</u> – Borings 12-05, 12-09 and 12-14 located along the eastern toe of the upper stockpile and extended into the lower stockpile. Similarly, boring 12-20 was east of the upper stockpile and was located south of cell F, nearer cell E. These borings all encountered brown silty sand with gravel. Borings 12-14 and 12-20 noted some 1 foot thick clay layers of soft to medium stiff consistency. All four borings were Geoprobe borings and no data was obtained on the consistency other than visual estimates.

<u>Cells G & H</u> – No borings were obtained in these cells. Due to high embankments planned in this area, additional borings will be required to finalize plans and specifications in this reach. See below paragraph on 'Subsequent Phase Investigations' for further discussion.

Settlement Analysis

Settlement affecting the landfill should occur predominantly within the overburden stockpile. The native soils encountered were dense to very dense and are likely highly over consolidated by glacial ice. Therefore, for deep seated settlement occurring within the native glacial till, the magnitude and uniformity across the site should not affect performance of the landfill.

The settlement at the boring locations was estimated by correlations with the standard penetration tests, and determined to be up to about 5 inches beneath the higher portions of the final landfill cap in the range of elevation 1580. Because there was a high degree of uncertainty with the SPT correlations, further subsurface exploration was conducted by obtaining four pressuremeter tests in the Cell A area. Settlement predictions based on the pressuremeter data are slightly higher than the SPT correlation, but have much higher confidence since the SPT is an index test and the pressuremeter actually measures a modulus value (stress - strain relationship).

The settlement was estimated by each SPT interval in the borings and using the elevations in Table 5. Boring 12-03 was through the berm crest. Borings 12-04, 12-15, 12-16 and 12-19 were considered representative of soils at the liner floor although the borings were located through the landfill side slopes, so the elevations of the nearby liner floor elevation were used for the calculations.

Table 5. Assumed Elevations at Boring Locations for Settlement Estimates

	Ele	vation (in fe		Height (in feet)			
	Initial	Liner	Final	Preload	Total Load		
Boring	Grade	Grade	Grade	(initial - liner)	(final - initial)		
12-03	1511	1513	1555	-2	42		
12-04	1513	1476	1540	37	64		
12-07	1524	1485	1557	39	72		
12-08	1534	1479	1567	55	88		
12-12	1522	1482	1580	40	98		
12-13	1521	1482	1580	39	98		
12-15	1529	1488	1580	41	92		
12-16	1521	1486	1550	35	64		
12-18	1526	1488	1580	38	92		
12-19	1535	1492	1550	43	58		

<u>SPT Correlations - The initial predictions of settlement were based on the correlation in Figure 1. The settlement was calculated from the vertical compressibility (mv) using the equations:</u>

$$m_v = 1.7/N^{1.4}$$
 [1/megapascal]

$$\delta_b = (1/3)(12 \text{ in/ft})(\sigma_{vo})(m_v)Z$$

and

$$\delta_{\rm s} = \delta_{\rm b} + (12 \text{ in/ft})(\sigma_{\rm vf} - \sigma_{\rm vo})(m_{\rm v})Z$$

where δ_b is the rebound from cutting the existing grade down to the liner grade, and δ_s is the vertical settlement after filling the landfill with waste and placing the cap. The mine overburden stockpile was assumed to be normally consolidated by the weight of the existing fill overlying the liner grade. Then the initial preconsolidation stress σ_{vo} is the multiple of the unit weight of the stockpile and height of the existing ground surface above liner grade. The unload-reload settlement curve (δ_b) was assumed to be 1/3 of the virgin compression. The final vertical stress on the liner is σ_{vf} . The difference $(\sigma_{vf} - \sigma_{vo})$ remains constant with depth below the liner, and is the multiple of the unit weight of waste and the height of waste above the liner.

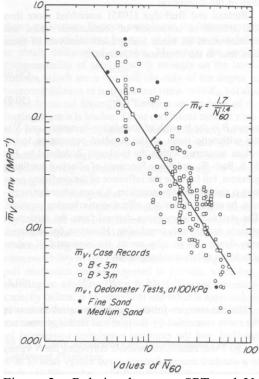


Figure 2. Relation between SPT and Vertical Compressibility (data from Burland and Burbidge 1985, Figure from Terzaghi, Peck and Mesri, "Soil Mechanics in Engineering Practice", 1996)

For example, assuming typical values at the maximum height of the cover of N=10 blows per foot, a 40 feet cut to liner grade and 100 feet of waste (including cap) above the liner,

$$m_v = 1.7/(10^1.4)/20.9 \text{ (ksf/MPa)} = 0.0032/\text{ksf}$$

$$\sigma_{vo} = 40'(100pcf) = 4 ksf$$

$$\delta_b = (1/3)(12 \text{ in/ft})(4\text{ksf})(.0032/\text{ksf})Z$$

$$\sigma_{vf}$$
 - σ_{vo} = 100'(80pcf) - 40'(100pcf) = 4 ksf

$$\delta_s = \delta_b + (12 \text{ in/ft})(4\text{ksf})(.0032/\text{ksf})Z$$

$$\delta_s$$
 (inches) = 0.20 Z (feet)

For 30 feet of compressible soils (with N = 10) below the liner, the total settlement of the liner is about 6 inches.

The general method of settlement prediction was extended to each SPT in the 10 borings evaluated using a 5 foot depth increment, and using the elevations in Table 5. The predicted settlements are reported in Table 6.

Table 6. Settlement Estimates

	SPT E	stimate	Modulus Estimate		
Boring	Rebound (inches)	Settlement (inches)	Rebound (inches)	Settlement (inches)	
	•	•	,		
12-03	0.0	7.8	0.0	13.4	
12-04	-0.7	1.4	-1.9	3.8	
12-07	-1.0	2.3	-1.7	3.8	
12-08	-1.2	2.2	-2.5	4.4	
12-12	-0.6	2.4	-1.5	5.8	
12-13	-1.1	4.7	-2.0	8.1	
12-15	-1.3	3.6	-2.7	7.9	
12-16	-1.1	2.6	-2.3	5.8	
12-18	-0.9	3.1	-2.5	9.1	
12-19	-1.8	2.0	-3.7	4.1	

Pressuremeter Correlations

Improved predictions of settlement were based on the elastic modulus of the soils. Several correlations of elastic modulus from SPT are available. For sands, a linear correlation is:

$$E(tsf) = 5(N + 15)$$
, for unsaturated sands

$$E(tsf) = 2.5 (N + 15)$$
, for saturated sands

For saturated sands, this value is reduced by 2. Another natural logarithm correlation is:

$$E(tsf) = 50 \ln(N).$$

These correlations are shown on Figure 2. The Menard modulus (E_m) has been shown to closely correspond to the elastic modulus, and the results of E_m are also plotted on Figure 2. The five pressuremeter test results for E_m all

plot between the liner correlations for E. The two lower values were tests 1A and 1B, where test 1A bursted the pressuremeter probe and was not completed. Using this data, an intermediate correlation is recommended of

$$E (tsf) = 3.75 (N + 15)$$

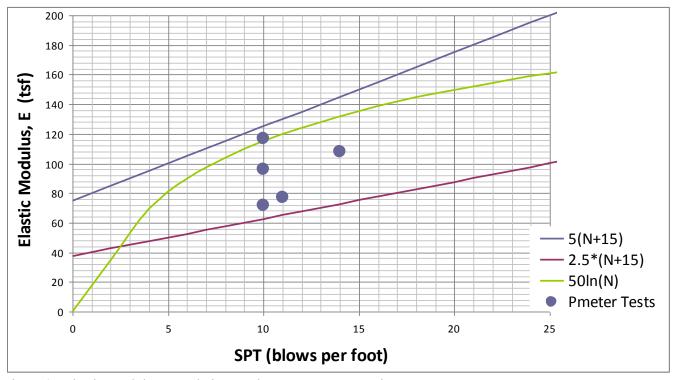


Figure 3. Elastic Modulus Correlations and Pressuremeter Results

The settlements were calculated in similar manner as the SPT (m_v) correlations using the following equations:

$$\delta_{\rm b} = (1/3)(12 \text{ in/ft})(\sigma_{\rm vo})Z/E$$

and

$$\delta_s = \delta_b + (12 \text{ in/ft})(\sigma_{vf} - \sigma_{vo})Z/E$$

Similar to the SPT (m_v) correlations, the settlement prediction based on modulus was extended to each SPT in the 10 borings evaluated using 5 feet depth increments, and using the elevations in Table 5. The predicted settlements are reported in Table 6. The modulus (E) predictions are generally about twice the compressibility (mv) predictions and are considered more defensible.

Conclusions on Settlement Analysis

Predicted liner settlement is about 4 – 8 inches over the liner floor. Differential settlement is expected to be on the order of 4 inches, occurring over distances of about 30 feet. The maximum differential settlement is most likely to occur transverse to the linear stockpile deposition shown on the 1939 and 1947 air photos (occurring primarily in a NW to SE direction, and fanning outward from the rail entrance at the NW corner of the stockpile. The stratification of the stockpile and elevation of the original ground surface is not known well enough to reliably map settlement over the landfill area, and these predictions should be considered to occur somewhat randomly. Settlement of the containment berm (as indicated by boring 12-03) could exceed one foot, but the liner

slopes are not susceptible to puddling of drainage, and the downdraft should not tension or tear the liner. Total settlement and differential settlement across the liner should not cause harm (over stress or damage) to the liner. Overall, the site is appropriate for construction of the landfill, given the recommendations in this report are followed.

Recommendations

The geotechnical conditions below the landfill footprint are controlled by the properties of the overburden stockpile, which was the focus of the data collection and analysis. Agreement in the settlement calculations from SPT data and pressure meter data provides reliability in maximum settlement provided in Table 6. These settlement values are considered acceptable to avoid ponding within the liner system or tensioning of the liner material. Recommendations for foundation preparation, fill placement, liner construction, and construction inspection are provided below to ensure limited settlement over the lifetime of the landfill. In addition, an instrumentation plan is included to provide design confirmation. The instrument plan should not be interpreted as a plan to compensate for design uncertainty, but rather good geotechnical practice.

Foundation preparation

Foundation preparation below the landfill footprint, where fill will be placed, should be graded with the following conditions prior to placing fill:

- All areas should include clearing and grubbing. Root balls shall be completely removed. Roots larger than 2 inches diameter shall be removed.
- All areas shall be stripped 6 inches to remove surficial vegetation and debris. If dense roots, organic
 soils, or material suitable for use as topsoil are encountered, these materials shall be removed to a suitable
 subgrade.
- Slopes should be cut back to no steeper than 3H:1V. Slopes 5H:1V or steeper shall be stepped with risers 3 feet in height and benches 9 to 15 feet in width during construction. Compaction equipment shall be run perpendicular to these slopes, run up against the slope, and backed off for each compaction lift. This will include significant excavation where the containment dike traverses the existing stockpile slopes (e.g. East leg of cell E) or crosses the existing stockpile (e.g. North and South legs of cell A).

Fill Placement

- Granular fill and pervious drainage layer should be placed in lifts not exceeding 1 foot in thickness and compacted with not less than 2 passes of a large self-propelled smooth-drum vibratory compactor. Soils should be compacted to not less than 95% of the standard proctor density defined in ASTM D-698. Granular fill should contain less than 20% passing the No. 200 sieve and no gravel larger than 1 inch.
- Compacted clay liner should be placed in lifts not exceeding 8 inches in thickness and compacted with not less than 3 passes of a sheep's-foot compactor. Soils should be compacted to not less than 95% of the standard proctor density defined in ASTM D-698. Moisture should be controlled during compaction to within -0% to +5% moisture content by dry weight from the optimum moisture content determined in D-698. If it is necessary to dry or wet soils, the soils should be disked or worked in accordance with guidelines in the Minnesota DOT standard specifications.
- The subgrade below the separation geotextile should be compacted with not less than 4 passes of a large self-propelled smooth-drum vibratory compactor, or until there is no further evidence of densification. The final pass should be inspected using a proof-rolling observation method and documentation. Areas where the vibration is damped or the subgrade does not densify relative to typical action of the compactor should be investigated.

Landfill Details

The landfill liner should include subgrade details to mitigate the potential for open graded gravel zones in the existing stockpile and to reduce localized settlement. The settlement below the landfill is expected to be less than 6 inches, with higher settlement zones located where fill depth will be the largest. There is a slight risk of localized zones of differential settlement due to differences in the existing stockpile height, changes in soil type, settlement of containment berms relative to the landfill floor, and unknowns regarding buried native soils and undulation in the original ground surface. These concerns are expected to be properly addressed by sub-cutting the liner 12 inches, thorough compaction of the subgrade, placement of a separation geotextile, and 12 inches of compacted granular fill below the clay liner. This subcut does little to change the total settlement, but will reduce differential movement and cracking caused by localized soft spots and subgrade material changes. The recommended typical landfill liner consists of the following zones from top to bottom:

- 12-inch pervious drainage layer for leachate collection
- 60-mil HDPE geomembrane liner
- 24-inch compacted clay liner
- 12-inches compacted granular fill
- separation geotextile, overlying compacted subgrade

The compacted granular fill should have less than 15% passing the No. 200 sieve, less than 20% retained on the No. 4 sieve, and no gravel retained on the 2" sieve. It is anticipated that this material will be available from the existing stockpile excavation zones, but will need to be borrowed selectively. Most of the soils classified as SP or SW on the boring logs should meet this specification.

The separation geotextile should meet the following requirements. Some fabrics that meet these specifications include Marifi 600X, and L & M Supply LM315.

Grab Tensile Strength	ASTM D 4632	300 pounds
Grab Tensile Elongation	ASTM D 4632	12%
Permittivity	ASTM D 4491	0.05/second
UV Resistance	ASTM D 4355	70% at 500 hours

Near the drainage sumps, leak detection will include additional zones of 12 inches pervious drainage layer and 60-mil HDPE geomembrane will be inserted between the clay and granular fill.

The landfill has a storm water control plan to convey stormwater away from the landfill footprint. The advanced borings indicated zones of materials that will be excavated classified as CL. This material would be appropriate to use in the lining of storm water conveyance ditches and settlement ponds to form a low permeability layer.

Instrumentation Plan

The following instrumentation is recommended. Instrumentation should be installed prior to construction in the area in order to obtain baseline readings.

- Two inclinometers should be placed along the Cell A west boundary, near the stockpile toe and contact with the fine tailings. These should be installed to elevation 1430, or 5 feet into soils with SPT > 30 blows per foot (current ground surface is about 1490).
- Two settlement plates near the centerline of the Cell A containment berm, west leg. The settlement plates shall consist of 1-1/2 inch iron pipe, welded to a steel plate ³/₄ inch think and 24 inch square. The plates shall be set at existing grade (about elevations 1985 and 1490), and rise to the berm crest (about elevation

1525) by extending the pipes. It is important to survey the top riser immediately before and after each extension. The riser pipe shall be covered with a 2-1/2" PVC sleeve.

Construction Inspection

The west side of Cell A should be inspected during construction near the access road that separates the stockpile and the tailings basin. Any suspect locations that show cracking, bulging or movement during fill placement should be investigated to confirm the toe of the stockpile is not undercut or overlying soft plastic soils associated with the tailings basin.

The entire landfill storage volume excavated from the existing overburden stockpile should be observed for soil types, stratification, inclination and orientation of stratification. Specific attention should be given to excavated zones that are cohesive, open graded gravel zones, buried debris or peat, or zones that appear soft or loose; and any such observations should be documented for future reference. The liner subgrade should be mapped for soil types, including stratifications and orientation.

Staking or marking of stationing and cell boundaries should be maintained in order to document location and elevations of observations during construction.

Subsequent Phase Investigations

Additional subsurface investigation will be required at the containment berm in Cells G and H. This additional subsurface exploration should be completed to determine stripping depths, compaction requirements in the berm section, and quality control testing. These borings have not been completed at this time since constructability does not appear to be an issue due to the predominant granular soils and large amount of granular borrow available on this site. Since the berm in this reach encompasses a large amount of fill that will be obtained from excavation in prior cells, these borings will likely be required well before construction of Cells G and H.

If you have any questions or comments please call.

Sincerely, NTS, Inc.

Doug Crum, P.E. Evan Johnson, EIT

Northeast Technical Services 526 Chestnut Street Virginia, MN Telephone: 1-218-741-4290 Fax: 1-218-741-4291

BORING NUMBER SB12-02 PAGE 1 OF 1

1 dx. 1-210-741-4231	
CLIENT General Waste Disposal & Recovery Services	PROJECT NAME SW-620
PROJECT NUMBER 6385E	PROJECT LOCATION Keewatin, Minnesota
DATE STARTED 10/18/12 COMPLETED 10/18/12	GROUND ELEVATION 1494 ft HOLE SIZE 2 inch
DRILLING CONTRACTOR NTS	GROUND WATER LEVELS:
DRILLING METHOD MC	AT TIME OF DRILLING

NOTES 40's F; rainy CHECKED BY J. Holmes AT END OF DRILLING AFTER DRILLING ATTERBERG LIMITS LIMITS	DRILLING CONTRACT	OR NIS	GROUND WA	II EK LEVEL	J .					
MATERIAL DESCRIPTION MC MC MC MC MC MC MC MC MC M	DRILLING METHOD _	AT TIME OF DRILLING								
NOTES 40's F; rainy AFTER DRILLING —- WALL HARD OF THE PRINT OF THE	LOGGED BY R. Foss	sell CHECKED BY J. Holmes								
MATERIAL DESCRIPTION MC MC MC MC MC MC MC MC MC M	NOTES 40's F; rainy									
MC (SC-SM) Silty clayey sand, medium stiff, brown to greyish brown, moist 50 MC 50 MC 50 MC 50 MC 75 MC 75	DEPTH (ft) (SAMPLE TYPE NUMBER GRAPHIC LOG		%		_	AT1	TERBE	3	INES CONTENT (%)	WELL DIAGRAM
10 MC 50 50 50 75 MC 75 100 100 100 100 100 100 100 100 100 10		(SC-SM) Silty clayey sand, medium stiff, brown to brown, moist	o grevish					Δ.	ш	
MC 50 50 75 100	10				8				37	
20 MC 75										
20 NC 100	MC MC		-							
	20 7 7 7 7 7 1 1 1	Bottom of borehole at 21.0 feet.								

Northeast Technical Services 526 Chestnut Street Virginia, MN Telephone: 1-218-741-4290 Fax: 1-218-741-4291

BORING NUMBER SB12-03 PAGE 1 OF 1

rax. 1-210-741-4291	
CLIENT General Waste Disposal & Recovery Services	PROJECT NAME SW-620
PROJECT NUMBER 6385E	PROJECT LOCATION Keewatin, Minnesota
DATE STARTED 10/17/12 COMPLETED 10/17/12	GROUND ELEVATION 1512 ft HOLE SIZE 4 inch
DRILLING CONTRACTOR STS	GROUND WATER LEVELS:
DRILLING METHOD 4 1 4" HSA	$\overline{2}$ AT TIME OF DRILLING 45.50 ft / Elev 1466.50 ft
LOGGED BY J. Holmes CHECKED BY	AT END OF DRILLING

NOTES _39 F; cloudy			OF DRILLIN PRILLING						
O DEPTH (ft) SAMPLE TYPE NUMBER GRAPHIC LOG	MATERIAL DESCRIPTION	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	MOISTURE CONTENT (%)	LIQUID	PLASTIC LIMIT	PLASTICITY SA INDEX	FINES CONTENT (%)	WELL DIAGRAM
0	(SP-SC) Sand with silty clay, brown, moist, fine to medium grained sand, Mine Overburden (SC-SM) Silty clayey sand, brown, moist, fine to medium grained sand, some fines, few gravel, Mine Overburden (SP-SM) Sand with silt, brown to 55 feet, gray from 55 to 60 feet, wet, fine to medium grained sand, few fines, few gravel (OL) Peat, black, wet, Native Ground Surface (SP-SC) Sand with silty clay, grey, wet, few fines, few gravel Bottom of borehole at 67.0 feet.	75 75 88 88 88 100 50 63 88 100	6-8-8-8 (16) 5-4-4-5 (8) 3-4-4-4 (8) 4-5-5-6 (10) 4-5-5-6 (10) 4-5-5-6 (10) 5-6-8 (14) 4-4-5-5 (9) 5-5-6 (11) 3-2-1-1 (3) 5-8-9-11 (17)	9				35	

Northeast Technical Services

BORING NUMBER SB12-04 PAGE 1 OF 1

	526 Chestnut Street
	Virginia, MN
ı	Telephone: 1-218-741-4290
	Fax: 1-218-741-4291

CLIENT General Waste Disposal & Recovery Services	PROJECT NAME SW-620								
PROJECT NUMBER 6385E	PROJECT LOCATION Keewatin, Minnesota								
DATE STARTED 10/17/12 COMPLETED 10/17/12	GROUND ELEVATION 1514 ft HOLE SIZE 4 inch								
DRILLING CONTRACTOR STS	GROUND WATER LEVELS:								
DRILLING METHOD 4 1 4" HSA	$\overline{2}$ AT TIME OF DRILLING 53.50 ft / Elev 1460.50 ft								
LOGGED BY J. Holmes CHECKED BY	AT END OF DRILLING								
NOTES 51 F; rainy	AFTER DRILLING								

LOGGED BY J. Holmes CHECKED BY	AT I	END (OF DRILLIN	G					
NOTES 51 F; rainy	AFT	TER D	RILLING						
4 × 0		% /	(a (ii)	щ (%)	AT	TERBE	Ş	L E N H	
SAMPLE TYPE NUMBER NUMBER AMPLE TYPE LOG LOG		RECOVERY (RQD)	BLOW COUNTS (N VALUE)	MOISTURE CONTENT (%)	LIQUID	PLASTIC LIMIT	PLASTICITY INDEX	FINES CONTENT (%)	WELL DIAGRAN
(SP-SC) Sand with clay and gravel, red to brown, Mine Overburden	, moist,								
ss s		13	4-5-5-5 (10)						
10 SS		88	2-2-3-4 (5)						
ss		88	2-3-3-3 (6)						
20 SS SS		100	2-3-3-3 (6)						
SS (SC-SM) 19 % gravel, 50 % sand, 31 % fines Silt	v clavev	100	3-4-6-8 (10)						
sand with gravel, grey to brown, moist, some fine gravel, Mine Overburden	s, little	13	4-6-9 (15)						
ss		13	16-8-6 (14)						
40 SS		63	6-8-8 (16)						
ss		75	9-9-9-9 (18)	10				31	
50 No Recovery SS No Recovery √ √ √ (SC-SM) 12 % gravel. 59 % sand. 29 % fines Silt		13	6-8-8 (16)						
SS (SC-SM) 12 % gravel, 59 % sand, 29 % fines Silt sand, brown, wet, fine to medium grained sand, li fines, few gravel	ittle -	75	3-6-6 (12)	13				29	
SS (OL) Peat, black, wet, Native Ground Surface		75	5-15-15 (30)						
(SP-SC) Sand with silty clay, brownish grey, wet, to coarse grained sand	medium	75	20-25-30 (55)						
70 SS (SP) Sand, brown, wet, medium grained		100	6-7-7-8 (14)						
Bottom of borehole at 72.0 feet.									

Northeast Technical Services 526 Chestnut Street

BORING NUMBER SB12-05

	Virginia, MN Telephone: 1-218-741-4290 Fax: 1-218-741-4291		
CLIENT _Ge	neral Waste Disposal & Recovery Services	PROJECT NAME	SW-620

PROJECT NUMBER 6385E PROJECT LOCATION Keewatin, Minnesota **DATE STARTED** <u>10/17/12</u> **COMPLETED** <u>10/17/12</u> GROUND ELEVATION 1479 ft HOLE SIZE 2 inch

	LING CO		TOR NTS	GROUNE	WAT	ER LEVEL	S:					
	LING MET	_		AT TIME OF DRILLING AT END OF DRILLING								
			Sell CHECKED BY J. Holmes									
NOTE	ES 40s F	; overc	ast	¥ AF	IEKL	RILLING _	1				_	
DEPTH (ft)	SAMPLE TYPE NUMBER	GRAPHIC LOG	MATERIAL DESCRIPTION		RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	MOISTURE CONTENT (%)	I	ERBE	Ş	FINES CONTENT (%)	WELL DIAGRAM
0	SAMPI	GR/ L			RECO (R	CO BI	MOIS	LIM	PLASTIC LIMIT	PLASTICITY INDEX	FINES (Casing Top Elev: 1482.96 (ft)
-	MC		(SP-SC) Sand with silty clay and gravel, brown, few fines, little gravel	moist,	75							
<u> </u>	MC				50							- Grout
_ 10	MC				0							Santanital
<u> </u>	MC		(SP-SC) Sand with silty clay and gravel, brown,	wat faw	75							- Bentonite Seal
20	MC MC		▼ fines, little gravel	wei, iew	50							- Sand Pack
-	MC				50							
	MC	-	Bottom of borehole at 25.0 feet.		25							
STE.GP.												
AL WAS												
GENER												
(6385E												
DECTS												
03/PRC												
ERVER												
GINTS												
:\GINT\												
7:23 - F												
EVANS - GINT US.GDT - 2/7/13 17:23 - P./GINT/GINT SERVER 03/PROJECTS/6385E GENERAL WASTE.GPJ												
GDT-												
INT US												
ANS - G												
À												

Northeast Technical Services

EVANS - GINT US.GDT - 277/13 17:23 - P.\GINT\GINT SERVER 03\PROJECTS\6385E GENERAL WASTE.GPJ

BORING NUMBER SB12-06 PAGE 1 OF 1

526 Chestnut Street Virginia, MN Telephone: 1-218-741-4290 Fax: 1-218-741-4291

CLIEN	IT Gene	eral Wa	aste Disposal & Recovery Services	PROJEC	T NAN	IE _SW-620)							
PROJ	ECT NUM	/IBER	6385E	PROJEC	T LOC	ATION Ke	ewatin	, Minn	esota					
DATE	STARTE	D 10	/18/12 COMPLETED 10/18/12	GROUNE	ELE\	/ATION _14	94 ft		HOL	E SIZ	E 2 ir	nch		
DRILL	ING CON	ITRAC	TOR NTS	GROUNE	WAT	ER LEVELS	:							
DRILL	ING MET	HOD	MC	AT TIME OF DRILLING										
LOGG	ED BY _	R. Fos	ssell CHECKED BY J. Holmes											
NOTE	S 40s F	; rainy		AFTER DRILLING										
					_			ΑT٦	ERBE	RG	<u> </u>			
DEPTH (ft)	SAMPLE TYPE NUMBER	GRAPHIC LOG	MATERIAL DESCRIPTION		RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	MOISTURE CONTENT (%)			SX XX	FINES CONTENT (%)	WELL [DIAGRAM	
<u> </u>	SAMP	GR			RECC (F	S C C B	CON	LIQUID	PLASTIC LIMIT	PLASTICITY INDEX	FINES	Casing To 1491.95 (1	p Elev: t)	
	МС		(SP-SC) Sand with silty clay and gravel, brown to brown, moist, few fines, little gravel, fill material	greyish	38									
 10	MC				38								- Grout	
	MC		(SC) Clayey sand with gravel, brown to greyish be moist, some fines, little gravel, fill material	rown,	38									
 	MC				75								- Bentonite Seal	
20	MC				75		11				47		-Sand	
 	MC		(SC) Clayey sand with gravel, brown to greyish be	rown,	75								Pack	
 	MC		wet, some fines, little gravel, fill material		100									
			Refusal at 29.0 feet. Bottom of borehole at 29.0 feet.											

BORING NUMBER SB12-07 PAGE 1 OF 1

Northeast Technical Services
526 Chestnut Street
Virginia, MN
Telephone: 1-218-741-4290
Fax: 1-218-741-4291

CLIEN			218-741-4291 aste Disposal & Recovery Services	PROJEC	T NAN	ME_SW-620)					
	ECT NUI					ATION Ke		n, Minn	nesota			
DATE	STARTE	D 10	0/16/12 COMPLETED _10/16/12	GROUN	D ELE	/ATION 15	522 ft		HOI	E SIZ	E 4 i	nch
DRILL	ING CO	NTRAC	CTOR STS	GROUN	D WAT	ER LEVELS	3 :					
			4 1 4" HSA									
			mes CHECKED BY									
NOTE	S 46 F;	Cloud	ly	AF	TER D	RILLING	-					ı
	H H				%		ш %	AT	ΓERBE ĻIMITS		ENT	
E C	SAMPLE TYPE NUMBER	GRAPHIC LOG	MATERIAL RECORDED ON		RECOVERY (RQD)	BLOW COUNTS (N VALUE)	MOISTURE CONTENT (%)		ပ	È,	NO (s	
DEPTH (ft)	APL NUM	L KAR	MATERIAL DESCRIPTION		SS	BLC SOU VA	SES N	LIQUID	PLASTIC LIMIT	SE	S S S	WELL DIAGRAN
	SAN	0			RE	ا کی	ΣÖ		PL	PLASTICITY INDEX	FINES CONTENT (%)	Casing Top Elev: 1524.73 (ft)
0			(SP) Sand with gravel, brown to red, dry, little gr	avel,							_	1524.73 (π)
-			trace fines, Mine Overburden									
	⊠ ss				13	7-7-7 (14)	1					
10	⊠ ss				63	4-4-4-4 (8)						
-							1					
-	⊠ ss				88	3-3-3-4 (6)	1					
20	X ss				88	3-3-3-3						- Grout
F =						(6)	1					
	⊠ ss		(SC) Clayey sand with gravel, brown, dry, some little gravel, Mine Overburden	fines,	75	4-18-28-18 (46)						
30	× ss				13	7-7-7						
-						(14)	1					
	⊠ ss				100	4-5-6-8 (11)						
40 5	⊠ ss	////	(SP) Sand with gravel, brown, moist, little grave	I, trace	63	25-15-7-7 (22)						- Bentoni
50 50	ss		(SC) Clayey sand with gravel, brown, moist, son	ne fines,	88	8-7-15-9	-					Seal
- - - 50	X ss		little gravel, Mine Overburden		63	(22) 15-8-7-7 (15)	1					Sand
	X ss		(OD) O and with annual branch was fine at		100	(15) 3-4-4-5 (8)	1					Pack
			(SP) Sand with gravel, brown, wet, trace fines, li gravel, Mine Overburden	ittie	100	3-4-4-4 (8) 3-4-4-5	12				26	
	SS SS				100	3-4-4-5 (8) 3-3-4-5	12				36	
60	X ss		(SP-SC) Sand with silty clay, brown, wet, few fir	nes	100	(7) 4-4-5-6	1					
<u> </u>			Bottom of borehole at 62.0 feet.			(9)	1					
2												
L												
2												
17												
EVANOS - GINT DOJODI - ZITIS T. 25 - T. JOHN NOIN I SERVEN USEN NOIN TO SERVEN USEN USEN NOIN TO SERVEN USEN USEN USEN USEN USEN USEN USEN US												
<u> </u>												
2												
Ϋ́ Α												

Northeast Technical Services 526 Chestnut Street Virginia, MN

PROJECT NUMBER 6385E

BORING NUMBER SB12-08

PAGE 1 OF 1

VIrginia, MIN

Telephone: 1-218-741-4290
Fax: 1-218-741-4291

CLIENT General Waste Disposal & Recovery Services PROJECT NAME SW-620

 DATE STARTED
 10/17/12
 COMPLETED
 10/18/12
 GROUND ELEVATION
 1522 ft
 HOLE SIZE
 4 inch

 DRILLING CONTRACTOR
 STS
 GROUND WATER LEVELS:

PROJECT LOCATION Keewatin, Minnesota

 DRILLING METHOD _4 1 4" HSA

 ∑ AT TIME OF DRILLING _60.00 ft / Elev 1462.00 ft

SS SS SS SS SS SS SS S	$\overline{\Box}$ AT TIME OF DRILLING $\underline{}$ 60.00 ft / Elev 1462.00 ft	
MATERIAL DESCRIPTION	CHECKED BY AT END OF DRILLING	
MATERIAL DESCRIPTION Second Second	AFTER DRILLING	
Mine Overburden 75 4-5-6 (11)	%	'ELL DIAGRAM
10		
10	75 4-5-6	
CL) Sandy clay, grey, moist, some sand, trace gravel, 100 2-2-4-4 (6) (6) (7) (11) (7) (11) (7) (11) (12		
SS (CL) Sandy clay, grey, moist, some sand, trace gravel, 100 2-2-4-4 (6)		
SS (CL) Sandy clay, grey, moist, some sand, trace gravel, 100 2-2-44 (6)		
SS SS SS SS SS SS SS S	ry, grey, moist, some sand, trace graver, 100 100	
SS (SP-SC) Sand with clay, brown to grey, moist, little gravel, few fines, Mine Overburden 75 4-5-6-7 (10) 75 4-5-8-7 (10) 75 4-5-8 (13) 75 4-5-8 (13) 75 4-5-8 (13) 75 4-5-8 (13) 75 7-5 (12) 75 7-9-15 (12) 75 7-9-15 (24)	100 3-3-3-3	
SS SS SS SS SS SS SS S	with day, brown to grey, moist, little 100 1 (46)	
40	es, Mine Overburden	
SS SS SS SS SS SS SS S		
SS (SP) Sand with gravel, brown to grey, wet, fine to medium grained (SC-SM) Silty clayey sand, grey, wet, rock chips, little fines, few gravel (SC-SM) Silty clayey sand, grey to brown, moist, some fines, Native Ground Surface encountered at 67 feet (SC-SM) Silty clayey sand, grey to brown, moist, some fines, Native Ground Surface encountered at 67 feet (AT)		
SS (SP) Sand with gravel, brown to grey, wet, fine to medium grained (SC-SM) Silty clayey sand, grey, wet, rock chips, little fines, few gravel (SC-SM) Silty clayey sand, grey to brown, moist, some fines, Native Ground Surface encountered at 67 feet (SC-SM) Silty clayey sand, grey to brown, moist, some fines, Native Ground Surface encountered at 67 feet (SC-SM) Silty clayey sand, grey to brown, moist, some fines, Native Ground Surface encountered at 67 feet (SC-SM) Silty clayey sand, grey to brown, moist, some fines, Native Ground Surface encountered at 67 feet (SC-SM) Silty clayey sand, grey to brown, moist, some fines, Native Ground Surface encountered at 67 feet		
grained SS (SC-SM) Silty clayey sand, grey, wet, rock chips, little fines, few gravel (SC-SM) Silty clayey sand, grey to brown, moist, some fines, Native Ground Surface encountered at 67 feet (SC-SM) Silty clayey sand, grey to brown, moist, some fines, Native Ground Surface encountered at 67 feet 47 47		
SS SS SS Silty clayey sand, grey, wet, rock chips, little 75 4-5-7-7 (12)		
(SC-SM) Silty clayey sand, grey to brown, moist, some fines, Native Ground Surface encountered at 67 feet 75 7-9-15 (24) 14 47	ciayey sand, grey, wet, rock onips, nucle 75 142\	
fines, Native Ground Surface encountered at 67 feet 75 7-9-15 (24)	clayev sand, grey to brown, moist, some	
	Fround Surface encountered at 67 feet 75 7-9-15 14 47	
	88 11-15-18-25 (33)	
80 SS (SP) Sand with gravel, brown, wet, fine to medium 75 (35) grained, trace fines, little gravel Bottom of borehole at 82.0 feet.	fines, little gravel	

Northeast Technical Services 526 Chestnut Street Virginia, MN Telephone: 1-218-741-4290 Fax: 1-218-741-4291

BORING NUMBER SB12-09 PAGE 1 OF 1

PROJECT NUMBER 6385E PROJECT LOCATION Keewatin, Minnesota DATE STARTED 10/17/12 COMPLETED 10/17/12 GROUND ELEVATION 1484 ft HOLE DRILLING CONTRACTOR NTS GROUND WATER LEVELS: DRILLING METHOD 4 1 4" HSA AT TIME OF DRILLING 23.00 ft / Elev 14 LOGGED BY R. Fossell CHECKED BY J. Holmes AT END OF DRILLING	61.00 ft .	
DRILLING CONTRACTOR NTS GROUND WATER LEVELS: DRILLING METHOD 4 1 4" HSA □ AT TIME OF DRILLING 23.00 ft / Elev 14.00 f	61.00 ft .	
DRILLING CONTRACTOR NTS GROUND WATER LEVELS: DRILLING METHOD 4 1 4" HSA □ AT TIME OF DRILLING 23.00 ft / Elev 14.00 f	61.00 ft .	
		Approximate
TOTAL TOTAL STATE OF THE PROPERTY OF THE PROPE	G -	
NOTES _40s F; overcast AFTER DRILLING	G F	
W ATTERBER		
	INDEX CONTENT (%)	
SAMPLE TYP NUMBER COVERY (RQD) BLOW COUNTS (N VALUE) LIGUID LIMIT PLASTIC LIMIT LI	INDEX FINES CONT (%)	WELL DIAGRAM
	≣	
- MC (SC-SM) Silty clayey sand with gravel, brown, moist, little fines, some gravel		
MC 50		
10 MC 50		
MC 38		
20 MC 75		
- M MC 0		
(SP-SC) Sand with silty clay and gravel, brown, wet, few		
\fines, some gravel Refusal at 24.0 feet.		
Bottom of borehole at 24.0 feet.		
NAST		
GENERAL WASTE.GPJ		
R 4 (1)		
ВЗ — — — — — — — — — — — — — — — — — — —		
EVANS - GINT US.GDT - 277/13 17:23 - P./GINT/GINT SERVER 03PROJECTS/63886E		

EVANS - GINT US.GDT - 277/13 17:23 - P.\GINT\GINT SERVER 03\PROJECTS\6385E GENERAL WASTE.GPJ

BORING NUMBER SB12-11

Northeast Technical Services 526 Chestnut Street Virginia, MN Telephone: 1-218-741-4290

'aclifices for fa	chnical concerns"	ax: 1-	218-741-4291											
CLIEN	IT Gene	eral Wa	aste Disposal & Recovery Services	PROJECT NAME SW-620										
PROJ	ECT NUM	/IBER	6385E	PROJECT LOCATION Keewatin, Minnesota										
DATE	STARTE	D _10	V18/12 COMPLETED 10/18/12	GROUND ELEVATION 1496 ft HOLE SIZE 2 inch										
DRILL	ING COM	NTRAC	CTOR NTS											
DRILL	ING MET	HOD	MC	AT TIME OF DRILLING										
LOGG	ED BY _	R. Fos	ssell CHECKED BY J. Holmes											
NOTE	S 40's F	; rainy	у	AF	TER D	PRILLING								
	ЭE				%		(%		ERBE	RG	LΝΞ			
o DEPTH (ft)	SAMPLE TYPE NUMBER	GRAPHIC LOG	MATERIAL DESCRIPTION		RECOVERY (RQD)	BLOW COUNTS (N VALUE)	MOISTURE CONTENT (%)			PLASTICITY NINDEX	FINES CONTENT (%)	WELL Casing To	DIAGRAM	
	мс		(SP-SC) Sand with silty clay and gravel, brown, m	noist,	38							1497.23	IL)	
	MC		few fines, little gravel, fill material		25								- Grout	
10	МС		(SC) Clayey sand with gravel, brown, moist, stiff t	o very	63									
	МС		stiff, some fines, little gravel, fill material		100								-Bentonite	
- ₂₀ -	МС				88								Seal	
	МС		(00)		75		11				47		-Sand Pack	
	МС		(SC) Clayey sand with gravel, brown, wet, some f little gravel, fill material	ines,	50								1 ack	
			Bottom of borehole at 27.0 feet.											

BORING NUMBER SB12-12 PAGE 1 OF 1

Northeast Technical Services 526 Chestnut Street Virginia, MN Telephone: 1-218-741-4290 Fax: 1-218-741-4291

CLII	ENT Gene	eral Wa	aste Disposal &	PROJECT NAME SW-620											
PROJECT NUMBER 6385E						PROJECT LOCATION Keewatin, Minnesota									
DAT	E STARTE	D 10	/16/12	COMPLETED 10/16/12	GROUND ELEVATION 1523 ft HOLE SIZE 4 inch										
DRI	LLING CON	NTRAC	TOR STS		GROUNE	WAT	ER LEVELS	i:							
			4 1 4" HSA			TIME	OF DRILLIN	IG							
LOG	GED BY	J. Hol	mes												
	Γ ES <u>66 F;</u>				AFTER DRILLING										
									^ -	ERBE	RG	-			
DEPTH	SAMPLE TYPE NUMBER	GRAPHIC LOG		MATERIAL DESCRIPTION		RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	MOISTURE CONTENT (%)		IMITS	3	FINES CONTENT (%)	WELL Casing T	DIAGRAM	
0			(SP) Sand (with gravel, brown, dry, little gravel,	Mine						ш	ш	1523.88	(ft) {	
10	- SS		Overburden		wine	75	5-9-6-7 (15)	_							
	SS			y sand with gravel, brown, moist, littl Mine Overburden	e fines,	75	5-4-4-5 (8)								
20	- SS					50	3-3-3-4 (6)								
	SS					50	3-4-3-3 (7)							- Grout	
30	- SS		(SC) Clayer	ery; rock or cobbles y sand with gravel, brown, moist, littl	e fines,	0	8-12-15-20 (27)							Grout	
	SS		little gravel,	Mine Overburden		50	4-5-6-8 (11)								
- 40	- ss					75	5-6-6-7 (12)								
<u>40</u> - -	× ss		with gravel,	% gravel, 70 % sand, 25 % fines Sil brown, moist, little fines, trace grav	ty sand el, Mine	100	5-6-7-8 (13)								
AL WAST	- SS		Overburder	1		100	8-9-12-15 (21)							- Bentonite	
50 SENE	× ss			Ity clayey sand, brown, moist, fine to	medium	75	8-11-7-7 (18)							Seal	
- 85E	SS	<i>[</i> 41]	, ,			75	8-8-9-9 (17) 8-8-9-9	10				25		-Sand	
S/63 - -	- SS SS	1//		brown, wet, fine to medium grained and with silty clay, brown, wet, fine to		100	(17) 4-5-6-6	10				25		Pack	
	X ss	```.Y.Z.		id, little fines		75	(11) 5-5-6-7	4						}	
PRO PRO	7 00	1		Bottom of borehole at 59.5 feet.		75	(11)	1							
EVANS - GINT US.GDT - 27/13 17:23 - P. GINT/GINT SERVER 03/PROJECTS/6385E GENERAL WASTE.GFJ 1 1 1 1 1 1 1 1 1															

BORING NUMBER SB12-13 PAGE 1 OF 1

Northeast Technical Services 526 Chestnut Street Virginia, MN Telephone: 1-218-741-4290 Fax: 1-218-741-4291

CLIENT General Waste Disposal & Recovery Services	PROJECT NAME SW-620								
PROJECT NUMBER 6385E	PROJECT LOCATION Keewatin, Minnesota								
DATE STARTED 10/18/12 COMPLETED 10/18/12	GROUND ELEVATION 1522 ft HOLE SIZE 4 inch								
DRILLING CONTRACTOR STS	GROUND WATER LEVELS:								
DRILLING METHOD 4 1 4" HSA	AT TIME OF DRILLING								
LOGGED BY J. Holmes CHECKED BY	AT END OF DRILLING								
NOTES 51 F; rainy	▼ AFTER DRILLING 59.40 ft / Elev 1462.60 ft								
	ATTERBERG -								
포 돗田 등 ''	% LIMITS ZY CE								

DRILLING METHOD		A1 11111E	OF DRILLI	••					
LOGGED BY J. Holi	mes CHECKED BY	AT END	OF DRILLIN	IG					
NOTES 51 F; rainy		Y AFTER D	ORILLING _	59.40 ft	t / Ele	v 1462	.60 ft		
SAMPLE TYPE NUMBER GRAPHIC LOG	MATERIAL DESCRIPTION	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	MOISTURE CONTENT (%)		PLASTIC TIMIT LIMIT		FINES CONTENT (%)	WELL DIAGRAM Casing Top Elev: 1524.17 (ft)
SS 10 SS 20 SS 30 SS 40 SS 50 SS 60 SS 50 SS 5	(SC-SM) Sand with silt, brown to grey, moist, fine grained, Mine overburden (SC-SM) 7 % gravel, 65 % sand, 28 % fines Silty sand, brown to grey, moist, fine to medium grained little fines, few gravel, Mine overburden (OL) Peat, black, wet, Native surface (SP-SC) Sand with silty clay, grey, wet, fine to me grained (SP) Sand, gray, wet, medium grained Refusal at 66.0 feet. Bottom of borehole at 66.0 feet.	100 100 100 100 100 100 100 100 63 50 75	4-5-6-7 (11) 4-5-6-7 (11) 1-2-2-3 (4) 2-3-3-4 (6) 3-4-5 (9) 3-4-4-5 (8) 4-5-7-9 (12) 4-4-4-4 (8) 6-12-9-9 (21) 11-4-5 (9) 3-3-3-4 (80)	11				28	- Grout - Bentoni Seal - Sand Pack

Northeast Technical Services 526 Chestnut Street Virginia, MN

EVANS - GINT US.GDT - 277/13 17:23 - P.\GINT\GINT SERVER 03\PROJECTS\6385E GENERAL WASTE.GPJ

BORING NUMBER SB12-14

PAGE 1 OF 1

Virginia, MN

Telephone: 1-218-741-4290

Fax: 1-218-741-4291

			aste Disposal & Recovery Services			ME SW-620						
	ECT NUN					ATION Ke						
DATE	STARTE	D 10	/16/12 COMPLETED 10/16/12	GROUNE	ELE	VATION 14	81 ft		HOL	E SIZI	E _2 ir	nch
DRILL	ING CON	ITRAC	TOR NTS	GROUNE) WAT	ER LEVELS	:					
DRILL	ING MET	HOD	4 1 4" HSA	$ar{oxday}$ at	TIME	OF DRILLIN	G <u>24</u>	.00 ft /	Elev	1457.0	00 ft A	pproximate
LOGG	ED BY _	R. Fos	ssell CHECKED BY J. Holmes	AT	END	OF DRILLIN	G					
NOTE	S 60s F	; sunn	у	AF	TER D	RILLING	-					
	111				.0				ERBE	RG	Ļ	
_	SAMPLE TYPE NUMBER	_			% √ (ZE (E)	MOISTURE CONTENT (%)		IMITS	<u>-</u>	CONTENT (%)	
DEPTH (ft)	LE . MBF	GRAPHIC LOG	MATERIAL DESCRIPTION		RECOVERY (RQD)	BLOW COUNTS (N VALUE)	ST	≙⊢	PLASTIC	타xI	6 8	WELL DIAGRAM
ä	A D	GR					S L	LIQUID	PS L™	ST	ES	
0	8/				2		_ O	_	۵	PLASTICITY INDEX	FINES	
	МС		(SP-SC) Sand with silty clay and gravel, brown,	moist	38							
 	мс				0							
10	мс				25							
	MC				25							
20	МС				38							
	МС		7		63							
	мс		(CL) Lean clay with sand, soft to medium stiff, b grey, moist	1	63							
30	МС		(SC-SM) Silty clayey sand with gravel, brown, w fines, little gravel	_	50							
		7.71.1.1	(SC) Lean clay with sand, soft to medium stiff, b grey, moist	rown to								
			Refusal at 31.0 feet.									
			Bottom of borehole at 31.0 feet.									

Northeast Technical Services 526 Chestnut Street

BORING NUMBER SB12-15

Virginia, MN Telephone: 1-218-741-4290 Fax: 1-218-741-4291

Tux. 1210 741 4201	
CLIENT General Waste Disposal & Recovery Services	PROJECT NAME SW-620
PROJECT NUMBER 6385E	PROJECT LOCATION Keewatin, Minnesota
DATE STARTED <u>10/15/12</u> COMPLETED <u>10/15/12</u>	GROUND ELEVATION 1529 ft HOLE SIZE 4 inch
DRILLING CONTRACTOR STS	GROUND WATER LEVELS:
DRILLING METHOD 4 1 4" HSA	$\overline{igspace}$ AT TIME OF DRILLING $\underline{57.40}$ ft / Elev 1471.60 ft
LOGGED BY J. Holmes CHECKED BY	AT END OF DRILLING
NOTES 55 F; sunny	AFTER DRILLING
	_ ATTERBERG ⊢

LOGGED BY _J. Holmes CHECKED BY	AT END OF DRILLING		
NOTES 55 F; sunny	AFTER DRILLING		
SAMPLE TYPE NUMBER NUMBER CRAPHIC LOG	RECOVERY % (RQD) BLOW COUNTS (N VALUE) MOISTURE	ATTERBERG LIMIT PLASTIC TY LIMIT PLASTICITY BLASTICITY INDEX	WELL DIAGRAM SUL Casing Top Elev: 1532 99 (ft)
(SP) Sand with gravel, brown to red, dry, some or at 22 feet, Mine overburden (SP) Sand with gravel, brown to red, dry, some or at 22 feet, Mine overburden (SC) 4 % gravel, 56 % sand, 40 % fines Clayey s gravel, light brown to 40 feet, gray from 40 to 50 moist, some fines, trace gravel, Mine Overburde (SP) Sand, light brown, dry, fine to medium grain (SP) Sand, brown, wet, fine to medium grained (SP) Sand, brown, wet, fine to medium grained (SP) Sand with silty clay, brown, wet, fine to r grained sand, little fines (CL) Clay with sand, gray, moist, little sand, cohe (OL) Peat, black, wet, Native Surface Bottom of borehole at 77.0 feet.	75 8-8-6-6 (14) 13 7-6-7-7 (13) 63 4-4-4-4 (8) 50 5-4-4-4 (8) 25 11-6-3-3 (9) d with 13 20-10-13-13 (23) 50 6-5-6-6 (11) 88 4-4-6-8 (10) 63 4-6-7-12 (13) 63 7-5-7-7 (12) 100 4-6-6-7 (12) 63 4-6-8-9 (14) 88 5-5-7-7 (12) dium 100 7-8-8-9 (16)		- Grout - Bentoniti Seal - Sand Pack

Northeast Technical Services 526 Chestnut Street Virginia, MN

BORING NUMBER SB12-16

PAGE 1 OF 1

CLIENT	Fax: 1-218-741-4291 General Waste Disposal & Recover	, Sarvicas	PROJECT NAME	SW 620
Northeast Technical S "solutions for technical co	Telephone: 1-218-741-4290			

 DRILLING METHOD
 4 1 4" HSA

 ∑ AT TIME OF DRILLING

 58.50 ft / Elev 1463.50 ft

LOGGED BY J. Holmes CHECKED BY AFTER DRILLING AFTER DRILLING AFTER DRILLING AFTER DRILLING AFTER DRILLING ATTERBERG LIMITS LIVE SUMPLY AND STATE STAT	DIAGRAI
MATERIAL DESCRIPTION Solution Solution	DIAGRAI
sand, little gravel, Mine Overburden 50	
Overburden (30-5W) Glayey sand, gray, moist, some lines, will be the some street of the s	
100 5-7-8-10 13 44	
SS (SP) Sand, brown, wet, fine to medium grained, Native Ground Surface (SC-SM) Silty clayey sand, grey, moist, some fines (SC-SM) Silty clayey sand, grey, moist, some fines Refusal at 77.0 feet. Bottom of borehole at 77.0 feet.	

Northeast Technical Services 526 Chestnut Street Virginia, MN Telephone: 1-218-741-4290

EVANS - GINT US.GDT - 2/7/13 17:23 - P.\GINT\GINT SERVER 03\PROJECTS\6385E GENERAL WASTE.GPJ

BORING NUMBER SB12-17D

PAGE 1 OF 1

CLIENT General Waste Disposal & Recovery Services PROJECT NAME SW-620

PROJECT NUMBER 6385E PROJECT LOCATION Keewatin, Minnesota

DATE STARTED 11/9/12 COMPLETED 11/9/12 GROUND ELEVATION 1475 ft HOLE SIZE 2 inch

DRILLING CONTRACTOR NTS GROUND WATER LEVELS:

	ING COM			GROUNE								
	ING MET			GROUND WATER LEVELS:								
	SED BY					OF DRILLIN						
	- S 30s F			AFTER DRILLING								
					%				ERBE	ş	ENT	
O DEPTH	SAMPLE TYPE NUMBER	GRAPHIC LOG	MATERIAL DESCRIPTION		RECOVERY 9 (RQD)	BLOW COUNTS (N VALUE)	MOISTURE CONTENT (%)	LIQUID	PLASTIC LIMIT	PLASTICITY INDEX	FINES CONTENT (%)	WELL DIAGRAM Casing Top Elev: 1474.76 (ft)
	МС		(SC) 25 % gravel, 60 % sand, 15 % fines Silty cla sand with gravel, brown, moist, coarse sand, little some gravel, 6 inch grey clay lenses at 3 feet and	fines,	75							
	MC		Some graver, o mon grey day lenses at 3 leet and	i io ieet	75							
10	MC				50		5				15	- Grout
	MC MC		✓ (OL) Peat, black, moist, Native Ground Surface		25							
20	MC		(SC-SM) Silty clayey sand with gravel, brown, we fines, little gravel, 6 inch gray clay lense at 22 fee	t, some	50							- Bentonite
	MC				25							- Sand
30	МС		(SP-SC) Sand with silty clay and gravel, grey, we coarse grained sand, few fines, little gravel	t,	13							Pack
			Bottom of borehole at 32.0 feet.									

Northeast Technical Services 526 Chestnut Street Virginia, MN Telephone: 1-218-741-4290 Fax: 1-218-741-4291

BORING NUMBER SB12-18D PAGE 1 OF 1

CLIENT General Waste Disposal & Recovery Services	PROJECT NAME SW-620
PROJECT NUMBER 6385E	PROJECT LOCATION Keewatin, Minnesota
DATE STARTED 11/8/12 COMPLETED 11/9/12	GROUND ELEVATION 1531 ft HOLE SIZE 4 inch
DRILLING CONTRACTOR STS	GROUND WATER LEVELS:
DRILLING METHOD 4 1 4" HSA	$\overline{2}$ AT TIME OF DRILLING 68.00 ft / Elev 1463.00 ft
LOGGED BY E. Johnson CHECKED BY J. Holmes	AT END OF DRILLING
NOTES 40s F; Overcast	AFTER DRILLING

NOTE	S 40s F	; Overd	<u>cast</u> AF	TER D	RILLING	-	A.T.		-00			
o DEPTH (ft)	SAMPLE TYPE NUMBER	GRAPHIC LOG	MATERIAL DESCRIPTION	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	MOISTURE CONTENT (%)		PLASTIC PLASTIC LIMIT		FINES CONTENT (%)	WELL Casing T 1533.1 (f	DIAGRAM op Elev:
 - 10	ss		(SC) Clayey Sand, brownish red, moist, Mine Overburden	50	6-6-6-6 (12)	_						
 	SS SS			50	5-7-6-6 (13) 12-20-10-5 (30)							
20	× ss			50	3-4-5-5 (9)							
30	SS SS		(SC-SM) Silty clayey sand with gravel, brownish red, moist, some fines, little gravel, lenses of wet grey sand,	13	9-6-5-5 (11)) 						
40	× ss		Mine Overburden	50	9-7-5-5 (12) 7-7-6-6	10				33		- Grout
50	SS SS			50	9-9-8-8							
	SS SS		(SC-SM) Silty clayey sand with gravel, brown, moist,	63	7-10-9-9 (19) 7-10-11-15 (21)	9				30		
60	× ss × ss		some fines, little gravel, similiar to above but darker, Mine Overburden	88 63	5-10-10-10 (20) 10-10-10-12 (20) 7-7-7-9	9				31		
70	SS SS SS		(ML) Sandy Silt with gravel, blackish brown, moist, slight organic odor, possibly Native ground (SC) Clayey sand with gravel, grey, wet, little fines, little gravel, cobbles encountered at 67.5 feet, no sample from 67.5-70	75 100 75	4-6-11-12 (17) 32-45-50							
80	SS SS SS SS SS SS		(SP-SC) Sand with silty clay and gravel, brown, wet, very dense, few fines, little gravel, difficult drilling, likely gravel and cobbles	75 88 75 50	(95) 11-18-22-22 (40) 18-28-28-30 (56) 18-28-30-50 (58) 35-70							-Bentor Seal
90	SS SS SS SS		Bottom of borehole at 91.0 feet.	75 13 50	20-70-50 (120) 70 40-80-80 (160)							-Sand Pack
			Bottom of Botonole at 91.0 leet.		(100)							

Northeast Technical Services 526 Chestnut Street

BORING NUMBER SB12-19

Virginia, MN Telephone: 1-218-741-4290 Fax: 1-218-741-4291 **CLIENT** General Waste Disposal & Recovery Services PROJECT NAME SW-620

	PROJECT NUMBER 6385E PRO								ATION Ke	ewatin	, Minn	esota					
		STARTE			COMPLETED	11/8/12		ND ELEVATION 1531 ft HOLE SIZE 4 inch									
	DRILL	ING CON	NTRAC	TOR STS			_ GROUNE	GROUND WATER LEVELS:									
	DRILL	ING MET	THOD	4 1 4" HSA			_ AT	TIME	OF DRILLIN	IG							
	LOGG	ED BY _	E. Joh	nson	CHECKED B	Y J. Holmes			OF DRILLIN								
	NOTE	S 40's F	F; over	cast			48	nrs AF	TER DRILLI	NG _7).88 ft			
		出						%			ATT I	ERBE	ERG S	L			
	Ē(SAMPLE TYPE NUMBER	GRAPHIC LOG					RECOVERY (RQD)	BLOW COUNTS (N VALUE)	MOISTURE CONTENT (%)				FINES CONTENT (%)			
	DEPTH (ft)	APLE IOM	LO		MATERIAL D	ESCRIPTION		SS/	BLC SOUI	SE	LIQUID	PLASTIC LIMIT	ASTICI- INDEX	S S S	WELL	DIAGRAM	
		SAN	0					RE(02	ŽΘ	==	PL	PLASTICITY INDEX	Ä.	Casing To	op Elev:	
H	0			(CL) Sandy	lean clay with g	ravel, moist, brown	to red,						ш.	Ш	1533.47 (ft)	
F	-			some sand,	little gravel, Mir	ne Overburden											
H	-	X ss						88	9-9-9-10 (18)								
	10	V 00						88	8-5-6-7	21				52			
L	-	× ss						00	(11)	21				52			
F	-	X ss						13	4-4-5-6 (9)	_							
	20																
F	_	⊠ ss		(SC) Silty cl	ayey sand with little gravel, Mir	gravel, moist, brow ne Overburden	n to red,	100	4-5-5-6 (10)	16	38	14	24	43			
	-	X ss		001110 111100,	intio gravoi, iviii	io o voibal don		63	5-5-5-6								
F	30	V 30						00	(10)						N N		
t		× ss						75	5-4-5-5 (9)							- Grout	
-	-																
þ	_	⊠ ss		(SC) Clayey fines, little of	sand with gravers ravel, Mine Ove	el, moist, grey to br rburden	own, some	100	4-4-5-6 (9)	ļ							
$\frac{1}{2}$	40_	× ss		, ,	•			100	4-5-5-6								
E.G.	_								(10)								
WAS	-	X ss						100	4-5-5-8 (10)	13	22	12	10	34			
FRAL	50	1 00							5-5-5-6						N N		
SEN-	_	⊠ ss						88	(10)	ł							
3385E	_	⊠ ss						100	5-6-7-8								
CTS	60								(13)	1							
SOF T	_	X ss						100	5-6-7-8 (13)							Danta sita	
03/P	-							100	4-5-7-7							- Bentonite Seal	
RVER L	70	⊠ ss						100	(12)							-Sand	
ST SE	70	× ss		$ar{ar{m{\Lambda}}}$				100	5-6-7-8 (13)							Pack	
9	_	X ss		(SC) Clayey	sand, grey, we	t, little fines, few gra	avel	92	5-11-9-9								
	-	SS						13	(20) 3-3-5-7 (8) 4-7-8-11								
-53	80	✓ ss ✓ ss						100	4-7-8-11 (15) 15-8-10-15								
/13 17	-	X ss		(OL) Peat 1	lack wet organ	nic odor, Native Gro	ound /	100	(18) 5-8-10-18								
-2/7,	-	X ss		Surface				100	(18) 6-12-20-28	1							
 - GDT	90	SS		├── (SP-SC) Sa Iittle gravel	nd with clay and	I gravel, gray, wet,	tew fines,	88	(32) 11-23-14-15 (37)								
	_	X SS ≺ SS		(SP) Sand v		n, wet, 3 feet of fine		100	10-40-46-46 (86) 120								
S-G	-	(33)	,		4, refusal on co	bble/boulder	ou sallu	_ 50_/	120								
EVANS - GINT US.GDT - 27/13 17:23 - P./GINT/GINT SERVER 03/PROJECTS/6385E GENERAL WASTE.GPJ						at 94.0 feet. hole at 94.0 feet.											

Northeast Technical Services 526 Chestnut Street Virginia, MN

BORING NUMBER SB12-20

PAGE 1 OF 1

Telephone: 1-218-741-4290
Fax: 1-218-741-4291

CLIENT General Waste Disposal & Recovery Services PROJECT NAME SW-620

PROJECT NUMBER 6385E PROJECT LOCATION Keewatin, Minnesota

DATE STARTED 10/16/12 COMPLETED 10/16/12 GROUND ELEVATION 1491 ft HOLE SIZE 2 inch

DRILLING CONTRACTOR NTS GROUND WATER LEVELS:

DRILLII	NG CON	ITRACT	TOR NTS GF	GROUND WATER LEVELS: AT TIME OF DRILLING								
DRILLII	NG MET	HOD _	MC									
LOGGE	ED BY _	R. Foss	Sell CHECKED BY J. Holmes	AT	END (OF DRILLIN	G					
NOTES	50's F	; sunny	1	AF	TER D	RILLING						
O DEPTH (ff)	SAMPLE TYPE NUMBER	GRAPHIC LOG	MATERIAL DESCRIPTION		RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	MOISTURE CONTENT (%)	L	PLASTIC HIMIT	}	FINES CONTENT (%)	WELL DIAGRAM
- +	МС		(SP-SC) Sand with clay and gravel, moist, brown, fer fines, little gravel	W	50							
1	МС				50							
10	МС				0							
+	МС				50							
20	МС				25							
1	МС				25							
1	МС				38							
30	МС		¬ (CL) Lean clay with sand, soft to medium stiff, browr	to —	25							
			Refusal at 32.0 feet. Bottom of borehole at 32.0 feet.									

Northeast Technical Services 526 Chestnut Street Virginia, MN Telephone: 1-218-741-4290

BORING NUMBER SB12-21D

PAGE 1 OF 1

Fax: 1-218-741-4291

CLIENT General Waste Disposal & Recovery Services PROJECT NAME SW-620

PROJECT NUMBER 6385E PROJECT LOCATION Keewatin, Minnesota

DATE STARTED 11/13/12 COMPLETED 11/15/12 GROUND ELEVATION 1487 ft HOLE SIZE 2 inch

DRILLING CONTRACTOR NTS GROUND WATER LEVELS:

DRILLING METHOD _		AT TIME OF DRILLING							
		AT END	OF DRILLIN	G					
NOTES 30's F; overc	cast	AFTER D	PRILLING						
SAMPLE TYPE NUMBER GRAPHIC LOG	MATERIAL DESCRIPTION	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	MOISTURE CONTENT (%)	LIQUID	PLASTIC HIMIT LIMIT	S 	FINES CONTENT (%)	WELL DIAGRAM Casing Top Elev: 1489 4 (ft)
0	(SC-SM) Silty clayey sand, black to redish black, moist, fine grained sand, some fines, Mine Tailings (SC-SM) Silty clayey sand, reddish black, wet, fine grained sand, some fines, Mine Tailings (OL) Peat, black, wet, Native Soil contact (SP) Sand, brown, wet, coarse grained, 2 inch peat lens at 32 feet (CL) Lean clay, grey, moist, medium stiff (SP) Sand, brown, wet, coarse grained Bottom of borehole at 41.0 feet.	63 63 50 50 38 38		NOO COM	л Эп	A P	PLAS IN	HINE	- Grout - Bentonite Seal - Sand Pack

Northeast Technical Services

EVANS - GINT US.GDT - 277/13 17:23 - P.\GINT\GINT SERVER 03\PROJECTS\6385E GENERAL WASTE.GPJ

BORING NUMBER SB12-21S PAGE 1 OF 1

526 Chestnut Street Virginia, MN Telephone: 1-218-741-4290 Fax: 1-218-741-4291

CLIEN	LIENT General Waste Disposal & Recovery Services				PROJECT NAME SW-620							
PROJI	ECT NUM	IBER	6385E	PROJECT LOCATION Keewatin, Minnesota								
DATE	STARTE	D <u>11</u>	/13/12 COMPLETED 11/13/12	GROUNE	ELE\	/ATION 14	87 ft		HOL	E SIZ	E _2 ir	nch
DRILL	ING CON	ITRAC	CTOR NTS	GROUNE	WAT	ER LEVELS	:					
DRILL	ING MET	HOD	MC	AT	TIME	OF DRILLIN	G					
LOGG	ED BY _	R. Fos	ssell CHECKED BY J. Holmes	AT	END (OF DRILLING	G					
NOTE	S 30s F	; over	cast	AF	TER D	RILLING	-					
DЕРТН (ft)	SAMPLE TYPE NUMBER	GRAPHIC LOG	MATERIAL DESCRIPTION		RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	MOISTURE CONTENT (%)	<u> </u>	PLASTIC TIMIT LIMIT	PLASTICITY B	ES CONTENT (%)	WELL DIAGRAM
0	SA				쮼		20		Ы	P. –	FINES	Casing Top Elev: 1489.3 (ft)
10			(SM) Silty sand, black, moist, fine grained sand, M Tailings (SM) Silty sand, reddish black, wet, fine grained s Mine Tailings Bottom of borehole at 15.0 feet.									- Grout - Bentonite Seal - Sand Pack

Northeast Technical Services 526 Chestnut Street Virginia, MN

BORING NUMBER SB12-23

3 - ,		
Telephone: 1-218-741-4290		
Fax: 1-218-741-4291		

CLIENT General Waste Disposal & Recovery Services PROJECT NAME SW-620 PROJECT NUMBER 6385E PROJECT LOCATION Keewatin, Minnesota **DATE STARTED** 10/18/12 **COMPLETED** 10/18/12 GROUND ELEVATION 1496 ft HOLE SIZE 2 inch

		NTRAC	TOR NTS									
	ING ME		-									
			Sell CHECKED BY J. Holmes									
NOTE	S 40s F	-; rainy		AF	IEKD	RILLING					Ι.	
 E _	TYPE	일본			ERY % D)	W TS .UE)	URE NT (%)		LIMITS	3	NTENT	
O DEPTH	SAMPLE TYPE NUMBER	GRAPHIC LOG	MATERIAL DESCRIPTION		RECOVERY 9 (RQD)	BLOW COUNTS (N VALUE)	MOISTURE CONTENT (%)	LIMIT LIQUID	PLASTIC LIMIT	PLASTICITY INDEX	FINES CONTENT (%)	WELL DIAGRAM
	MC		(SC) Clayey sand with gravel, brown, moist, little little gravel, Mine Overburden	fines,	50							
10	MC				25							
	MC				63							
	MC MC				38							
_ 20	MC				0							
EVANS - GINT US.GDT - 277/13 17:23 - P:\GINT\GINT SERVER 03\PROJECTS\6385E GENERAL WASTE.GPJ			Refusal at 23.0 feet. Bottom of borehole at 23.0 feet.									

Northeast Technical Services 526 Chestnut Street Virginia, MN Telephone: 1-218-741-4290

BORING NUMBER SB12-24 PAGE 1 OF 1

Fax: 1-218-741-4291								
CLIENT General Waste Disposal & Recovery Services	PROJECT NAME SW-620							
PROJECT NUMBER 6385E	PROJECT LOCATION Keewatin, Minnesota							
DATE STARTED 10/17/12 COMPLETED 10/17/12	GROUND ELEVATION 1462 ft HOLE SIZE 2 inch							
DRILLING CONTRACTOR NTS	GROUND WATER LEVELS:							
DRILLING METHOD MC	AT TIME OF DRILLING							

			TOR NTS COMPLETED 10/17/12							LE SIZ		11011
	LING MET				AT TIME OF DRILLING							
LOGO	GED BY	R. Foss	sell CHECKED BY J. Holmes									
NOTE	ES <u>50s F</u>	; overca	ast	AF	TER D	RILLING						
O DEPTH (ff)	SAMPLE TYPE NUMBER	GRAPHIC LOG	MATERIAL DESCRIPTION		RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	MOISTURE CONTENT (%)		PLASTIC FIMIT	} 	FINES CONTENT (%)	WELL DIAGRAM
	МС		(SP-SC) Sand with silty clay and gravel, moderal brown, moist, few fines, little gravel, Mine Overbu	tely stiff, urden	75							
10	MC MC				75 75							
	MC				50							
20	MC				75							
	MC				50							
-	MC MC		Refusal at 29.0 feet.		75 0							
EVANS - GINT US.GDT - ZI/73 17:23 - P.YGINT GINT SERVEK USIPROJECTS 16385E GENERAL WASTE.GPJ			Bottom of borehole at 29.0 feet.									

Northeast Technical Services 526 Chestnut Street Virginia, MN Telephone: 1-218-741-4290

BORING NUMBER SB12-25

PAGE 1 OF 1

Fax: 1-218-741-4291	
CLIENT General Waste Disposal & Recovery Services	PROJECT NAME SW-620
PROJECT NUMBER 6385E	PROJECT LOCATION Keewatin, Minnesota
DATE STARTED 1/28/12 COMPLETED 2/7/12	GROUND ELEVATION 1523 ft HOLE SIZE 3 1/4 inch

 DRILLING CONTRACTOR
 American Engineering
 GROUND WATER LEVELS:

 DRILLING METHOD
 3 1 4" HSA
 AT TIME OF DRILLING

DRILLING METHOD _	3 1 4" HSA	AT TIME OF DRILLING							
LOGGED BY E. John	nson CHECKED BY J. Holmes	AT END OF DRILLING							
NOTES 20s F; over	cast	AFTER D	DRILLING _						
SAMPLE TYPE NUMBER GRAPHIC LOG	MATERIAL DESCRIPTION	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	MOISTURE CONTENT (%)	LIQUID LIMIT PLASTIC	TS	FINES CONTENT (%)	WELL DIAGRAM	
10	(SM) Silty sand, medium stiff, light brown, some fine trace gravel, medium grained sand, moist Bottom of borehole at 48.5 feet.	s, 100 78	3-6-5-5 (11) 4-5-5 (10) 5-5 (10)					Pressure meter - failed Pressure Meter 1	

EVANS - GINT US.GDT - 277/13 17:23 - P.\GINT\GINT SERVER 03\PROJECTS\6385E GENERAL WASTE.GPJ

BORING NUMBER SB12-25A PAGE 1 OF 1

Northeast Technical Services 526 Chestnut Street Virginia, MN Telephone: 1-218-741-4290

solutions for Earlinical consumes		218-741-4291	.200											
CLIENT Gen	eral W	aste Disposal &	Recovery Service	es	PROJECT NAME SW-620									
PROJECT NU	MBER	6385E			PROJEC	T LOC	ATION Ke	ewatin	, Minn	esota				
DATE STARTE	ED _1/:	29/12		1/29/12		ELE\	/ATION _15	23 ft		HOL	E SIZ	E 31	/4 inch	
DRILLING CO	NTRAC	CTOR America	n Engineering		GROUNE	WAT	ER LEVELS	:						
DRILLING ME	THOD	3 1 4" HSA			AT TIME OF DRILLING									
LOGGED BY	E. Joh	nnson	_ CHECKED BY	J. Holmes										
NOTES 20s F	; ove	rcast					RILLING							
111						_			ATT	ERBE	RG	<u>_</u>		
O DEPTH (ft) SAMPLE TYPE NUMBER	GRAPHIC LOG		MATERIAL DE	SCRIPTION		RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	MOISTURE CONTENT (%)	L	LIMITS	PLASTICITY INDEX	FINES CONTENT (%)	WELL DIAGRAM	
10 20 SS SS		(SM) Silty s	sand, brown, mois Bottom of boreh	t ole at 33.5 feet.			5-5 (10)						Pressure Meter 2	

Northeast Technical Services 526 Chestnut Street Virginia, MN

EVANS - GINT US.GDT - 2/7/13 17:23 - P.\GINT\GINT SERVER 03\PROJECTS\6385E GENERAL WASTE.GPJ

BORING NUMBER SB12-26

Telephone: 1-218-741-4290

Fax: 1-218-741-4291 **CLIENT** General Waste Disposal & Recovery Services **PROJECT NAME** SW-620 PROJECT NUMBER 6385E PROJECT LOCATION Keewatin, Minnesota GROUND ELEVATION 1494 ft HOLE SIZE 3 1/4 inch DATE STARTED 1/29/12 COMPLETED 1/29/12 DRILLING CONTRACTOR American Engineering GROUND WATER LEVELS: **DRILLING METHOD** 3 1 4" HSA AT TIME OF DRILLING ---LOGGED BY E. Johnson CHECKED BY J. Holmes AT END OF DRILLING _---NOTES 20s F; overcast AFTER DRILLING _---**ATTERBERG** FINES CONTENT (%) RECOVERY % (RQD) MOISTURE CONTENT (%) SAMPLE TYPE NUMBER **LIMITS** GRAPHIC LOG BLOW COUNTS (N VALUE) PLASTICITY INDEX DEPTH (ft) PLASTIC LIMIT LIQUID MATERIAL DESCRIPTION WELL DIAGRAM (SC-SM) Silty clayey sand, brown, moist, some fines, little gravel 5-5 (10) Pressure meter 3 (SM) Silty sand, greyish brown, moist, some fines, trace gravel, fine to medium grained sand Pressure meter 4 (14) Bottom of borehole at 21.5 feet.

PASSING 200/ MOISTURE CONTENT ASTM D 6913 AND D 2216

NORTHEAST TECHNICAL SERVICES, INC. 526 CHESTNUT STREET P.O. BOX 1142 VIRGINIA, MINNESOTA 55792 218-741-4290 FAX 218-741-4291 e-mail: nts@netechnical.com

Project	General Waste	Date Reported _	11/30/2012
Project #	6385E	COC#	210788

Sample	COC#	Lab I.D.	% Moisture	% Fines
12-8 (70-72)	210788	M547512	13.7%	46.5%
12-3 (10-12)	210788	210788 M547513		34.5%
12-3 (35-37)	210788	M547514	8.8%	32.0%
12-7 (45-47)	210788	M547515	11.9%	36.2%
12-2 (4-8)	210788	M547516	8.4%	37.3%
12-11 (16-20)	210788	M547517	11.4%	46.5%
12-18 (60-62)	210788	M547520	8.5%	31.1%
12-18 (50-52)	210788	M547519	9.3%	30.4%
12-18 (35-37)	210788	M547518	9.7%	33.3%
12-16 (45-47)	(45-47) 210788 M547503		12.8%	44.3%
12-16 (55-57)	210788	210788 M547504 15.0		53.0%
12-16 (75-77)	210788	0788 M547505 14.3%		45.8%
12-16 (30-32)	210788	M547506	18.9%	23.7%
12-19 (20-22)	210788	M547507	16.3%	43.3%
12-19 (10-12)	210788	M547508	20.5%	52.2%
12-19 (45-47)	210788	M547509	13.3%	33.5%
12-20 (28-32)	210788	M547510	14.6%	32.9%
12-17 (28-32)	210788	M547511	11.4%	30.0%

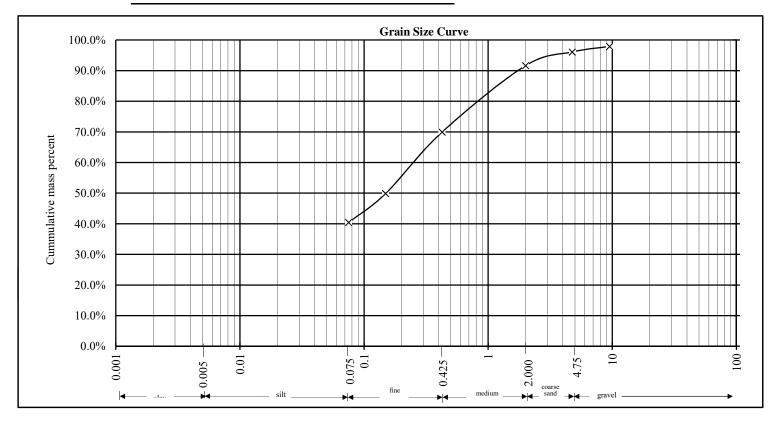
Comments:			
			_

GRAIN SIZE DISTRIBUTION REPORT ASTM D 422

NORTHEAST TECHNICAL SERVICES, INC 526 CHESTNUT STREET P.O. BOX 1142 VIRGINIA, MINNESOTA 55792 218-741-4290 FAX 218-741-4291 e-mail: nts@netechnical.com

 Project
 General Waste

 Sample ID
 SB 12-15 (35-37)


 Project #
 6385E

 Date Collected
 10/15/2012

 Date Reported
 11/30/2012

 Lab ID#
 M547498

 COC #
 210788

Size	Percentages	Specifications (% passing)	Percent Moisture	LL	PL	PI
			8.2%			
Silt/Clay	40.4%		0.270	Spe	cifications (LL	and PI)
Fine Sand	29.5%					
Medium Sand	21.7%			1	USCS Classific	ation
Coarse Sand	4.5%					
Gravel	3.9%			(SC-SI	M) SILTY, CLA	YEY SAND

Coefficient of Uniformity (Cu)	N/A
Coefficient of Curvature (Cc)	N/A

Comments:	
•	

GRAIN SIZE DISTRIBUTION REPORT Page 2

NORTHEAST TECHNICAL SERVICES, INC. 526 CHESTNUT STREET P.O. BOX 1142 VIRGINIA, MINNESOTA 55792 218-741-4290 FAX 218-741-4291 e-mail: nts@netechnical.com

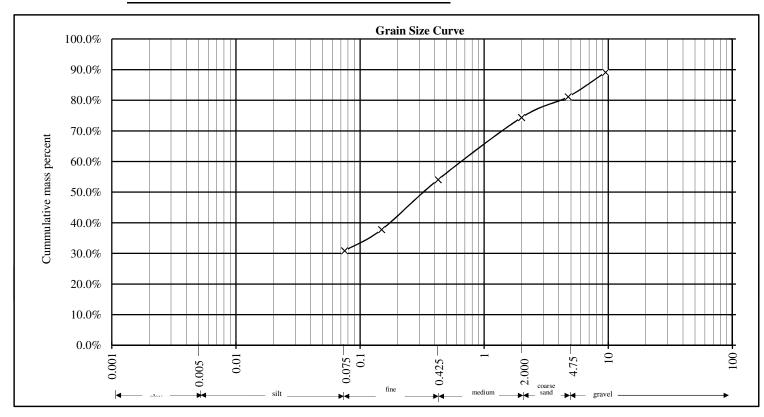
Project #:	6385E	COC #:_	210788	Lab ID #: M547498	
Project:			General Waste		
Architect/Engine	er:		<u>-</u>		
Contractor:			-		
Sieve Size	Percent Passing	Required Specifications	Sample ID:	SB 12-15 (35-37)	
			Date Sampled:	10/15/2012	
			_	10/15/2012	
			Date Analyzed:	11/28/2012	
			Sample Location:	SB 12-15 (35-37)	
			Intended Use:		
3\8	98%		_		
#4	96%		Pit/Source: _		
#10	92%		Sampled By:	J. Holmes	
#40	70%				
#100	49.9%		Lab Technician:	EJ, JE	
#200	40.4%		Reviewed By:	JE	
	in accordance with AS	ГМ D 422			
Comments:					

GRAIN SIZE DISTRIBUTION REPORT ASTM D 422

NORTHEAST TECHNICAL SERVICES, INC. 526 CHESTNUT STREET P.O. BOX 1142 VIRGINIA, MINNESOTA 55792 218-741-4290 FAX 218-741-4291 e-mail: nts@netechnical.com

 Project
 General Waste

 Sample ID
 SB 12-4 (45-47)


 Project #
 6385E

 Date Collected
 10/17/2012

 Date Reported
 11/30/2012

 Lab ID#
 M547499

 COC #
 210788

Size	Percentages	Specifications (% passing)	Percent Moisture	LL	PL	PI
			9.9%			
Silt/Clay	30.9%		9.970	Spe	cifications (LL	and PI)
Fine Sand	23.2%					
Medium Sand	20.3%			1	USCS Classific	ation
Coarse Sand	6.8%			(SC-SI	M) SILTY, CLA	YEY SAND
Gravel	18.9%			Ì	WITH GRAV	

Coefficient of Uniformity (Cu)	N/A
Coefficient of Curvature (Cc)	N/A

Comments:	
•	
•	

6385E

Project #:

GRAIN SIZE DISTRIBUTION REPORT Page 2

210788

COC #:

NORTHEAST TECHNICAL SERVICES, INC. 526 CHESTNUT STREET P.O. BOX 1142 VIRGINIA, MINNESOTA 55792 218-741-4290 FAX 218-741-4291 e-mail: nts@netechnical.com

Lab ID #: M547499

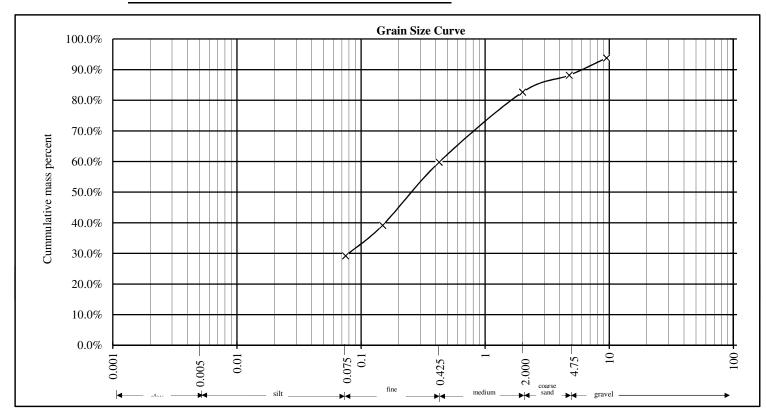
Project:		General Waste					
Architect/Engine	er:		<u>-</u>				
Contractor:			-				
Sieve Size	Percent Passing	Required Specifications	Sample ID:	SB 12-4 (45-47)			
			Date Sampled:	10/17/2012			
			Date Received:	10/17/2012			
			Date Analyzed:	11/28/2012			
			Sample Location:	SB 12-4 (45-47)			
			Intended Use:				
3\8	89%						
#4	81%		Pit/Source:				
#10	74%		Sampled By:	J. Holmes			
#40	54%						
#100	37.8%		Lab Technician:	EJ, JE			
#200	30.9%		Reviewed By:	JE			
Tested	in accordance with AS	ГМ D 422	·				
Comments:							

GRAIN SIZE DISTRIBUTION REPORT ASTM D 422

NORTHEAST TECHNICAL SERVICES, INC. 526 CHESTNUT STREET P.O. BOX 1142 VIRGINIA, MINNESOTA 55792 218-741-4290 FAX 218-741-4291 e-mail: nts@netechnical.com

 Project
 General Waste

 Sample ID
 SB 12-4 (55-57)


 Project #
 6385E

 Date Collected
 10/17/2012

 Date Reported
 11/30/2012

 Lab ID#
 M547500

 COC #
 210788

Size	Percentages	Specifications (% passing)	Percent Moisture	LL	PL	PI
			12.6%			
Silt/Clay	29.2%		12.0%	Spe	cifications (LL	and PI)
Fine Sand	30.6%					
Medium Sand	22.9%			1	USCS Classific	ation
Coarse Sand	5.5%					
Gravel	11.8%			(SC-SI	M) SILTY, CLA	YEY SAND

Coefficient of Uniformity (Cu)	N/A
Coefficient of Curvature (Cc)	N/A

Comments:	
•	
•	

GRAIN SIZE DISTRIBUTION REPORT Page 2

NORTHEAST TECHNICAL SERVICES, INC. 526 CHESTNUT STREET P.O. BOX 1142 VIRGINIA, MINNESOTA 55792 218-741-4290 FAX 218-741-4291 e-mail: nts@netechnical.com

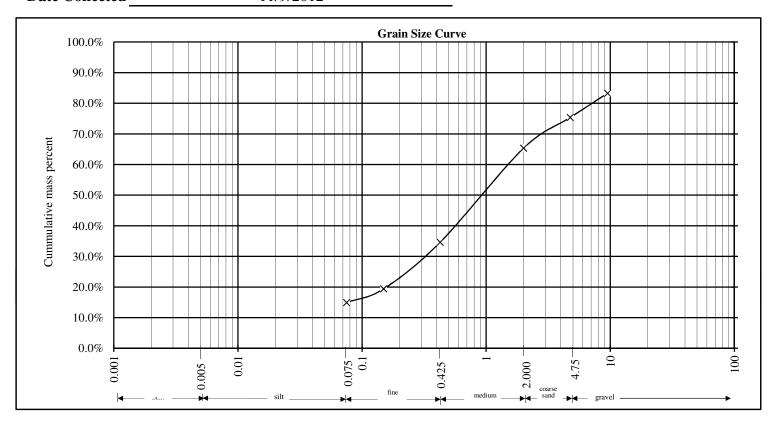
Project #:	6385E	COC #:_	210788	Lab ID #: M547500
Project:			General '	Waste
Architect/Engine	er:		-	
Contractor:			-	
Sieve Size	Percent Passing	Required Specifications	Sample ID:	SB 12-4 (55-57)
			Date Sampled:	10/17/2012
			_	10/17/2012
			Date Analyzed:	11/28/2012
			Sample Location:	SB 12-4 (55-57)
			Intended Use:	
3\8	94%		_	
#4	88%		Pit/Source: _	
#10	83%		Sampled By:	J. Holmes
#40	60%			
#100	39.2%		Lab Technician: _	EJ, JE
#200	29.2%		Reviewed By:	JE
Tested Comments:	in accordance with AS	ГМ D 422		

GRAIN SIZE DISTRIBUTION REPORT ASTM D 422

NORTHEAST TECHNICAL SERVICES, INC. 526 CHESTNUT STREET P.O. BOX 1142 VIRGINIA, MINNESOTA 55792 218-741-4290 FAX 218-741-4291 e-mail: nts@netechnical.com

 Project
 General Waste

 Sample ID
 SB 12-17 (8-12)


 Project #
 6385E

 Date Collected
 11/9/2012

 Date Reported
 11/30/2012

 Lab ID#
 M547501

 COC #
 210788

Size	Percentages	Specifications (% passing)	Percent Moisture	LL	PL	PI
			4.8%			
Silt/Clay	14.9%		4.070	Specifications (LL and PI)		
Fine Sand	19.7%					
Medium Sand	30.7%			USCS Classification		
Coarse Sand	10.0%			(SC-SM) SILTY, CLAYEY SAND		
Gravel	24.6%			WITH GRAVEL		

Coefficient of Uniformity (Cu)	N/A
Coefficient of Curvature (Cc)	N/A

Comments:	

6385E

Project #:

GRAIN SIZE DISTRIBUTION REPORT Page 2

210788

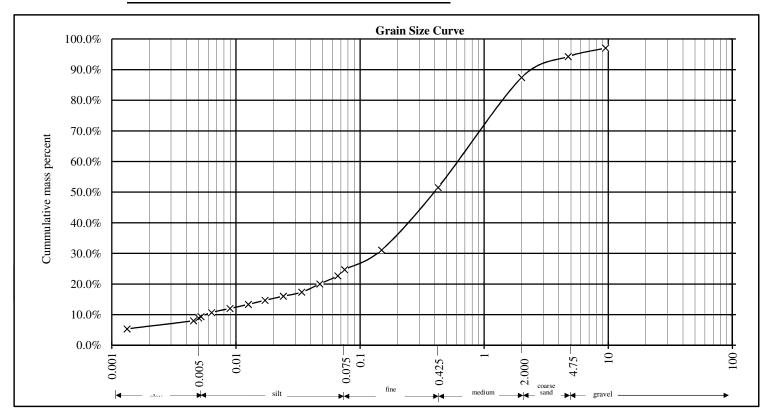
COC #:

NORTHEAST TECHNICAL SERVICES, INC. 526 CHESTNUT STREET P.O. BOX 1142 VIRGINIA, MINNESOTA 55792 218-741-4290 FAX 218-741-4291 e-mail: nts@netechnical.com

Lab ID #: M547501

Project:			General V	Waste
Architect/Engine	er:		-	
Contractor:				
Sieve Size	Percent Passing	Required Specifications	Sample ID:	SB 12-17 (8-12)
			Date Sampled:	11/9/2012
				11/9/2012
			Date Analyzed:	11/28/2012
			Sample Location:	SB 12-17 (8-12)
			Intended Use: _	
3\8	83%		_	
#4	75%		Pit/Source: _	
#10	65%		Sampled By: _	R. Fossel
#40	35%			
#100	19.4%		Lab Technician: _	EJ, JE
#200	14.9%		Reviewed By:	JE
	in accordance with AST	ГМ D 422	_	
Comments:				

GRAIN SIZE DISTRIBUTION REPORT ASTM D 422


NORTHEAST TECHNICAL SERVICES, INC. 526 CHESTNUT STREET P.O. BOX 1142 VIRGINIA, MINNESOTA 55792 218-741-4290 FAX 218-741-4291 e-mail: nts@netechnical.com

Project	General Waste	
Sample ID	SB 12-12 (45-47)	
Project #	6385E	
Date Collected	10/16/2012	

 Date Reported
 11/30/2012

 Lab ID#
 M547502

 COC #
 210788

		Specifications	Percent			
Size	Percentages	(% passing)	Moisture	LL	PL	PI
Clay	8.9%		9.9%			
Silt	15.8%		9.9 /0	Specifications (LL and PI)		
Fine Sand	26.8%					
Medium Sand	35.9%			USCS Classification		
Coarse Sand	6.8%					
Gravel	5.7%			(SC-SI	M) SILTY, CLA	YEY SAND

Coefficient of Uniformity (Cu)	106.45
Coefficient of Curvature (Cc)	4.97

Comments:			

6385E

Project #:

GRAIN SIZE DISTRIBUTION REPORT Page 2

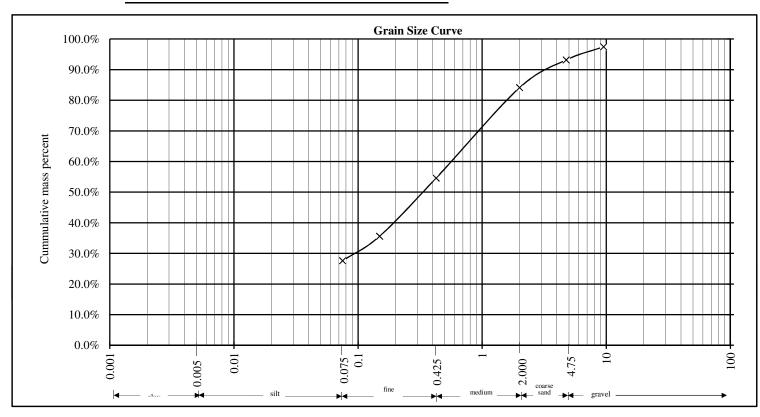
210788

COC #:

NORTHEAST TECHNICAL SERVICES, INC. 526 CHESTNUT STREET P.O. BOX 1142 VIRGINIA, MINNESOTA 55792 218-741-4290 FAX 218-741-4291 e-mail: nts@netechnical.com

Lab ID #: M547502

Project:			General W	aste
Architect/Enginee	r:		-	
Contractor:			<u>-</u>	
Sieve Size	Percent Passing	Required Specifications	Sample ID:	SB 12-12 (45-47)
			Date Sampled:	10/16/2012
				10/16/2012
			Date Analyzed:	11/28/2012
			Sample Location:	SB 12-12 (45-47)
3\8	97%		Intended Use:	
#4	94%		_	
#10	87%		Pit/Source:	
#40	52%		Sampled By:	J. Holmes
#100	31%			
#200	24.7%		Lab Technician:	ЕЈ, ЈЕ
Clay (<.005mm)	8.9%		Reviewed By:	JE
Tested in	accordance with AST	TM D 422		
Comments:				
_				
_				


GRAIN SIZE DISTRIBUTION REPORT **ASTM D 422**

NORTHEAST TECHNICAL SERVICES, INC. **526 CHESTNUT STREET** P.O. BOX 1142 VIRGINIA, MINNESOTA 55792 218-741-4290 FAX 218-741-4291

e-mail: nts@netechnical.com

Project	General Waste	
Sample ID	SB 12-13 (50-52)	
Project #	6385E	
Date Collected	10/18/2012	

Date Reported 11/30/2012 **Lab ID#** M547503 COC# 210788

Size	Percentages	Specifications (% passing)	Percent Moisture	LL	PL	PI
			10.5%			
Silt/Clay	27.6%		10.5%	Specifications (LL and PI)		
Fine Sand	27.0%					
Medium Sand	29.5%			USCS Classification		
Coarse Sand	9.1%					
Gravel	6.8%			(SC-SI	M) SILTY, CLA	YEY SAND

Coefficient of Uniformity (Cu)	N/A
Coefficient of Curvature (Cc)	N/A

Comments:			
			_

6385E

Project #:

GRAIN SIZE DISTRIBUTION REPORT Page 2

210788

COC #:

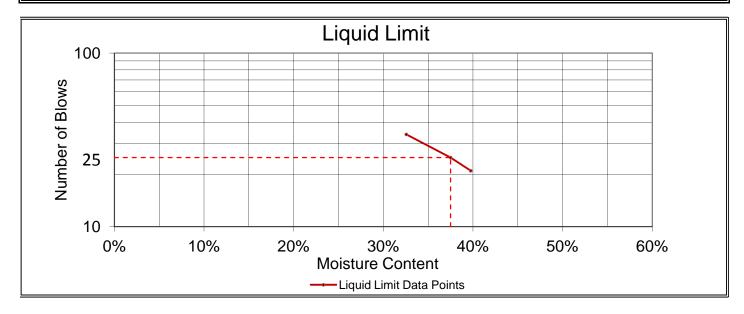
NORTHEAST TECHNICAL SERVICES, INC. 526 CHESTNUT STREET P.O. BOX 1142 VIRGINIA, MINNESOTA 55792 218-741-4290 FAX 218-741-4291 e-mail: nts@netechnical.com

Lab ID #: M547503

Project:			General Waste			
Architect/Engineer:			-			
Contractor:			-			
Sieve Size	Percent Passing	Required Specifications	Sample ID:	SB 12-13 (50-52)		
			Date Sampled:	10/18/2012		
			Date Received:	10/18/2012		
			Date Analyzed:	11/28/2012		
			Sample Location:	SB 12-13 (50-52)		
			Intended Use:			
3\8	97%					
#4	93%		Pit/Source:			
#10	84%		Sampled By:	J. Holmes		
#40	55%					
#100	35.6%		Lab Technician:	EJ, JE		
#200	27.6%		Reviewed By:	JE		
Tested i	in accordance with AST	ГМ D 422	·			
Comments:						

Atterberg Limits Report ASTM D-4318

NORTHEAST TECHNICAL SERVICES, INC. 526 CHESTNUT STREET P.O. BOX 1142 VIRGINIA, MINNESOTA 55792 218-741-4290 FAX 218-741-4291 e-mail: nts@netechnical.com


Project #:	6385E	COC#:	210788	Lab ID #: _	M547507
Project:	General Waste				
Architect/Engine	er: <u>-</u>				
Contractor					

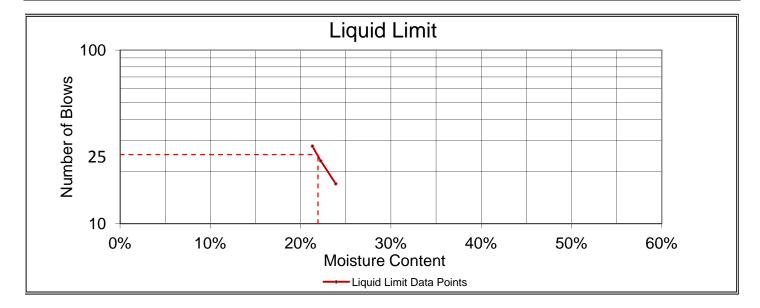
 Sample ID: GP 12-19 (20-22ft)

 Test Results:
 Specifications:

 Liquid Limit: 38%
 Plasticity Index: 24%
 Liquid Limit: Plasticity Index: Plasticity Index: Plastic Limit: % Moisture: % Moisture: % Moisture: % Moisture: % Passing #200

 Passing #4
 Passing #4
 Passing #4

Summary of	f Methods:	Comments:	
Preperation:	Wet Preperation Method		
Liquid Limit:	Method A		
Plastic Limit:	Hand Rolled Method		



Atterberg Limits Report ASTM D-4318

NORTHEAST TECHNICAL SERVICES, INC. 526 CHESTNUT STREET P.O. BOX 1142 VIRGINIA, MINNESOTA 55792 218-741-4290 FAX 218-741-4291

218-741-4290 FAX 218-741-4291 e-mail: nts@netechnical.com

Project #: 6385	<u>COC #:</u>	210/88 Lab ID	#: M54/509
Project:	General Waste		<u> </u>
Architect/Engineer:	<u>-</u>		
Contractor:	<u>-</u>		
Sample ID: GP 12-1	9 (45-47ft)		
Te	st Results:	Specifications:	
Liquid Limit: 22%	Plasticity Index:10%	Liquid Limit: Plasticity Ind	ex:
Plastic Limit: 12%	% Moisture:13.3%	Plastic Limit % Moistu	re:
Passing #200 34%	_	Passing #200	
Passing #4	_	Passing #4	

Summary of Methods:		Comments:	
Preperation:	Wet Preperation Method		
Liquid Limit:	Method A		
Plastic Limit:	Hand Rolled Method		

Appendix B Cell B Subgrade Assessment

GENERAL WASTE LANDFILL- KEEWATIN, MN CELL B SUBGRADE ASSESSMENT

KEEWATIN, MN 55753

PREPARED FOR:

DEM-CON COMPANIES 13020 DEM CON DR. SHAKOPEE, MN 55379

PREPARED BY:

NORTHEAST TECHNICAL SERVICES, INC. 526 CHESTNUT STREET VIRGINIA, MINNESOTA 55792

NTS PROJECT# 10882

OCTOBER 2017

PROFESSIONAL CERTIFICATION

I HEREBY CERTIFY THAT THIS PLAN, SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIRECT SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER UNDER THE LAWS OF THE STATE OF MINNESOTA

EVAN C. JOHNSON, PE GEOTECHNICAL ENGINEER LICENSE NO. 53755

October 3, 2017

Mr. Mark Pahl Chief Operating Officer 35005 Co Rd 571 Keewatin, MN 55753

RE: Cell B Subgrade Assessment and Recommendations NTS Project No. 6385ECA

Dear Mr. Pahl

Northeast Technical Services, Inc. (NTS) is pleased to present this report for the above referenced project. This letter report includes the findings of 2 on-site inspections, 6 test pit locations, and soil laboratory results in regards to assessing the recommendation of conducting a 1 foot sub-cut of the Cell B subgrade and replacing with a compacted granular material.

After reviewing site design grades, pre-existing grades, 2013 geotechnical assessment report, and the acquired data from the on-site inspections, test pits and laboratory tests, it is the recommendation of NTS that a 1 foot subcut of the Cell B liner construction is not required, and that the existing in-situ subgrade is sufficient given the recommendations provided in this report are followed.

We have appreciated the opportunity to assist with this project. Please contact Evan Johnson by phone at 218-742-1022 or via email at ejohnson@netechnical.com if you have any questions or concerns regarding this letter or the recommendations made herein.

Sincerely,

Northeast Technical Services, Inc.

Evan C. Johnson, PE Geotechnical Engineer

Table of Contents

1.0	PROJECT DESCRIPTION AND SCOPE OF WORK	l
1.		1
1.2		1
1.3	3 Scope of Work Performed	2
1.4		2
1.:	5 LABORATORY TESTING	2
	CELL B ANALYSIS	
2.	1 Surcharge Loading	2
2.2	2 Inspection of Excavation, Soil Consistancy	2
2.3	3 SUBGRADE INSPECTION	3
2.4		3
3.0	RECOMMENDATIONS4	ı
3.	1 SUBGRADE PREPARATION	4
4.0	QUALIFICATIONS	ļ

Table of Figures

FIGURE 1: SITE LOCATION MAP

FIGURE 2: CHANGE IN ELEVATION MAP FIGURE 3: TEST PIT LOCATION MAP

Appendices

APPENDIX A: FIELD NOTES/SITE EVALUATION PHOTOS

APPENDIX B: LABORATORY TESTING RESULTS APPENDIX C: 2013 GEOTECHNICAL ASSESSMENT

General Waste Industrial Landfill - Keewatin, MN Cell B Subgrade Assessment October 4, 2017 Page 1 of 4

1.0 Project Description and Scope of Work

1.1 Project Overview

General Waste & Recycling LLC operates a facility that contains an unlined demolition and composite lined industrial landfill in Keewatin, MN. The industrial landfill is planned and permitted to be developed in individual cells, with Cell B construction occurring during the 2017 construction season. Per Cell a project specification, the subgrade on which the clay liner was placed on the cell floor was to be sub-cut 12 inches, a separation geotextile placed, and 12 inches of compacted granular material placed to bring the cell floor to subgrade elevation. This specification originated from a recommendation provided in the initial geotechnical evaluation of the facility for permitting purposes (Appendix A, "Geotechnical Review of Proposed Industrial Landfill located near Keewatin, MN", p.12).

This report was completed to assess if the specified 1 foot subcut and separation geotextile were appropriate for the Cell B construction.

1.2 Existing Site Conditions

The site is located in the southeast quarter of Section 25, Township 57N, Range 22W, an area where the topography has been highly modified by historical iron mining. The site is bounded on the north by U. S. Highway 169, and Keewatin, MN is located directly north opposite the highway. The west site of the site is bounded by a tailings basin containing hydraulic fill from Mesabi Chief Heavy Media plant which operated from 1928 to 1970 (end date is approximate) and more recently operated by Magnetation between approximate year 2010-2015. The east side of the site is bounded by Itasca County Road 571, and there are other overburden lean ore and blast rock stockpiles east of County Road 571. The NSPC Initial Tailings Basin is about ½ mile to the southeast of the site. South of the site, there is a cell phone transmission tower, an automotive salvage yard, and other terrain that historical photography indicates to be native landform.

The landfill site contains a historical overburden stockpile materials constructed with overburden from one of the nearby open pit mines. Overburden stripping operations in the Keewatin vicinity mines is believed to have been started circa 1913. An air photo dated 1939 shows the stockpile was substantially completed by that date. The primary method of placement likely consisted of constructing temporary railroads, side-dumping rail cars, and pushing the soil down inclined slopes that progressed across the site at the angle of repose. The lift heights during soil placement may be indicated by the stockpile's outer slopes, which are typically 30-40 feet. Several lifts appear to have been placed over the site with total fill depth up to about 80 feet.

General Waste Industrial Landfill - Keewatin, MN Cell B Subgrade Assessment October 4, 2017 Page 2 of 4

Cell B is thought to be located completely within the extents of the placed stockpile, with the subgrade elevation thought to be 15-25 feet above the native surface.

1.3 Scope of Work Performed

NTS conducted a review of the 2013 geotechnical assessment, an analysis of the surcharge loading over the Cell B floor, an inspection of site soil conditions during excavation activities, an inspection of the subgrade condition with shallow test pitting conducted, and laboratory testing of the Cell B in-situ subgrade material.

1.4 Subsurface Exploration

Six tests pits spaced across the Cell B floor were dug to approximately 4 feet below subgrade elevation to analyze for varying soil conditions. Field notes and photos were collected and select soil samples obtained.

1.5 Laboratory Testing

In addition to the visual classification, laboratory analysis of the collected soils included four soil gradations (ASTM D6913) and moisture analyses (ASTM D4643). Testing results can be seen in Appendix B.

2.0 Cell B Analysis

2.1 Surcharge Loading

A review of the pre-existing grade in the Cell B footprint as compared to the design subgrade elevation for Cell B showed that surcharge loads vary from 34 to 48 feet across the Cell B floor footprint with 95% of the area falling into a tighter range of 36 to 46 feet of surcharge. This surcharge loading is quite uniform when compared to Cell A construction that exhibited a sharp change in elevation (edge of stockpile) in the middle of the cell floor. This uniform surcharge 'preload' equally consolidates underlying soils and reduces the possibility of localized differential settlement caused by future loading of waste to be placed in the cell footprint.

2.2 Inspection of Excavation, Soil Consistency

A site inspection was conducted on August 29, 2017 during excavation activities to bring the site to subgrade elevation. The site was currently being excavated from east to west with an approximate 8 foot tall bench. The lower area was still 8 feet above subgrade, and the upper area approximately 16 feet above subgrade.

Two predominant soil groups were visible across the site. The first was a brown silty sand with gravel (visual classification) and the second a red clayey sand with gravel (visual classification).

General Waste Industrial Landfill - Keewatin, MN Cell B Subgrade Assessment October 4, 2017 Page 3 of 4

Based on observations of the sidewalls and center bench, the brown silty sand appeared to underlay the red clayey sand with the transition occurring approximately 10-15 feet above subgrade elevation.

Layering of material in the stockpile was expected to be angled near the angle of repose based on Cell A construction and site history. However, the interface between the brown silty sand and red clayey sand appeared to be much flatter with intersection line less than 10% grade. However, the exact orientation of the interface could not be clearly determined and flatter observed interfaces may be a result of the excavation intersecting the sloped interface perpendicular to the slope.

Soil samples were collected of the two observed materials for gradation testing.

2.3 Subgrade Inspection

On September 14, 2017 an inspection was conducted of the nearly completely excavated subgrade elevation. The predominant material observed at the subgrade elevation was a brown silty sand with gravel, which had been previously observed beginning at 10-15 feet above cell floor subgrade.

Six test pits were conducted to approximately 4 feet below subgrade elevation across the subgrade floor. The test pit sidewalls were inspected as well as the excavated material. The material in all six test pits indicated the brown silty sand with gravel, with fines content varying slightly. The greatest variation was observed in Test Pit #4 where a brown sand with silt was observed. Two soil samples were collected from the test pits representing the brown silty sand that appear to contain the most and least fines content. These samples indicated similar gradations with fines content ranging from 20-30%. These test pit sample gradations agreed well with the original brown silty sand gradation conducted following the August 29 inspection.

2.4 Review of 2013 Geotechnical Assessment

A review was conducted of the 2013 geotechnical assessment in light of the modified cell B footprint from the original design as well as recently acquired data and observations. Soil Borings SB 12-03, SB 12-07, SB 12-08, and SB 12-12 were all near or within the Cell B footprint. Soil samples collected from these boreholes indicated similar gradations as recently collected data near the subgrade elevation. These boring appear to indicate that the native surface is at approximate elevation of 1455 feet MSL, leaving approximately 15-25 feet between the subgrade floor and native ground. Native ground when encountered in borings indicated a dense to very dense sand with silty clay. The placed fill material remaining below the Cell B subgrade appears to be generally consistent material with borings indicating a brown sand, sand with silt, or silty clayey sand that is generally in a medium dense state. SB 12-07 indicated material in a loose state between elevations 1460-1470.

General Waste Industrial Landfill - Keewatin, MN Cell B Subgrade Assessment October 4, 2017 Page 4 of 4

Estimated settlement from the initial analysis for Cell B floor area indicated settlement ranging from 3.8 to 5.8 inches based on the Menard Modulus (E_m) and 2.2 to 2.4 inches based on SPT correlation.

3.0 Recommendations

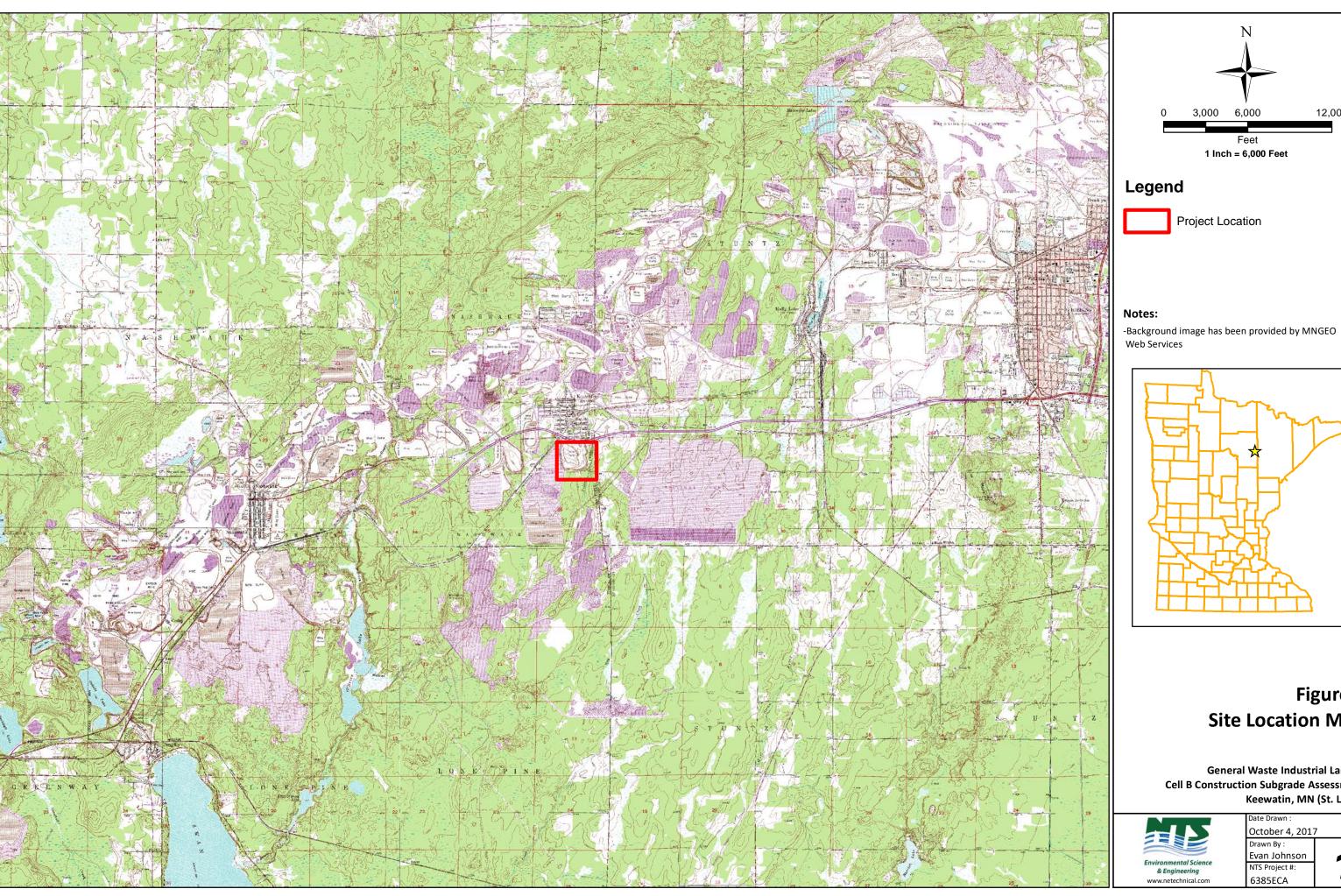
3.1 Subgrade Preparation

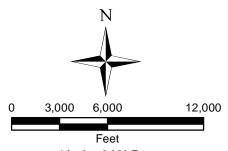
Based on assessment of the Cell B footprint and review of the previously conducted geotechnical assessment, the existing Cell B in-situ subgrade is appropriate for the proposed Cell B liner construction without the need for correction. This recommendation assumes the observed soil conditions across the floor area remain consistent with that which is described in this report. If observations or soil conditions are noted that do not align with those noted in this report, further investigation should be completed.

The in-situ subgrade should be moisture conditioned to be within 5% of optimum moisture for compaction (ASTM D698) and proof-rolled and shown to exhibit no greater than 2 inches of deformation under loading from a large vibratory smoot drum roller. If this cannot be achieved, further investigation should be conducted.

4.0 Qualifications

Recommendations provided herein are based on our professional judgment. The soil testing and geotechnical engineering services provided for this project have been conducted in a manner consistent with that level of skill and care ordinarily exercised by other members of the profession currently practicing in this geographical area under similar time and budget constraints. No other warranty is made.


The scope is limited to the specific project and location described herein, and our description of the project represents our understanding of the significant aspects relevant to soils and foundations. In the event that any changes in the design from the assumptions outlined in this report are planned, NTS should be informed so that changes can be reviewed.


Figures

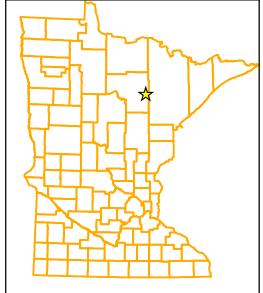
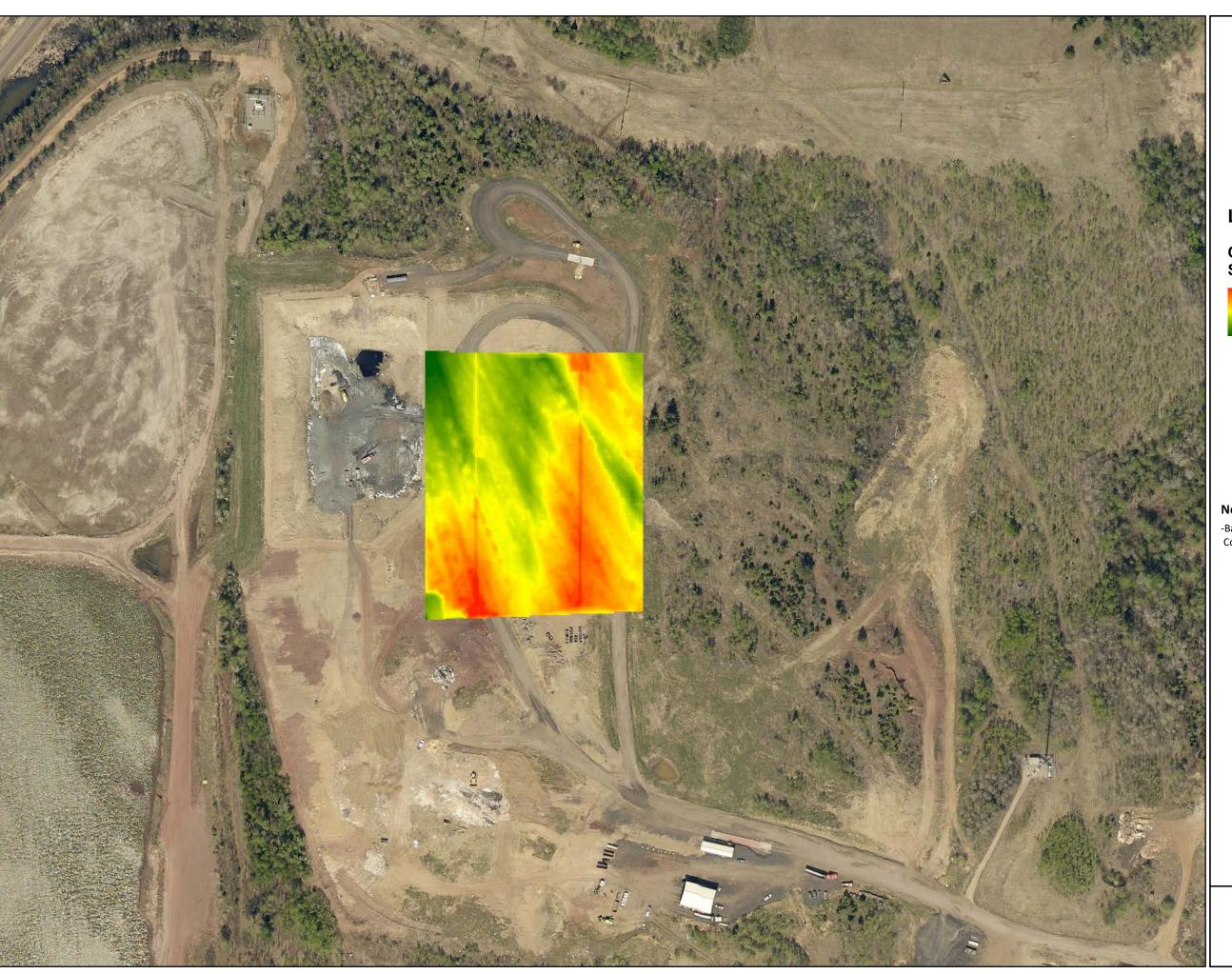
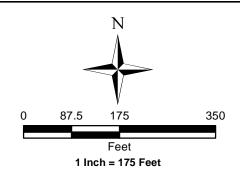

Figure 1: Site Location Map

Figure 2: Change In Elevation Map

Figure 3: Test Pit Location Map




Figure 1 **Site Location Map**

General Waste Industrial Landfill Cell B Construction Subgrade Assessment Keewatin, MN (St. Louis)

October 4, 2017

Evan Johnson NTS Project #:

Legend

Cell B Change in Elevation - Subgrade Floor

48 Feet

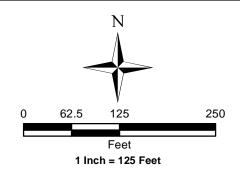
34 Feet

Notes:

-Background image has been provided by St. Louis County Web Services. App. Image Date: May, 2016

Figure 2 Change In Elevation Map


General Waste Industrial Landfill Cell B Construction Subgrade Assessment Keewatin, MN (St. Louis)



Date Drawn : October 4, 2017

Drawn By:
Evan Johnson
NTS Project #:
6385ECA

2

Legend

- Test Pit Locations
- Historic Boring Locations

Cell B App. Subgrade

Notes:

-Background image has been provided by St. Louis County Web Services. App. Image Date: May, 2016

Figure 3 Test Pit Location Map

General Waste Industrial Landfill Cell B Construction Subgrade Assessment Keewatin, MN (St. Louis)

Date Drawn : October 4, 2017

Drawn By :
Evan Johnson
NTS Project #:
6385ECA

3

Appendix A Field Notes/Site Evalution Photos

	General Waste Subgrade Inspection COMB Pg 1/2
66	
· + · ·	7-29-17 Evan Johnson
1200	Prep at office, leave for site
1250	Arrive at site. Meet Mark at office.
1300	Drive 1- CCIIB excavation. Observed 2 excavators
	cutting, 'I dozer proshing, One excapator
	working near center of floor, cutting Britarial.
	that is 8-18' above base grade. One excavator
	i dozer working on north wall cutting to slope in
	base grade. South i East glope graded to lase
	grade elevation where above current excalation
	depth.
	A distinct material transition is evident,
	between 2 material. Material A observed
	more mesterly in the call is Brown Silty
and in	Sand with gravel, fine content ranging
lover lift.	from 10-30%. Material Bis observed
	higher in the mine dump material and
	in the eastern portion, Material B
	is Sandy Clay mith grand, Deep red Plastic,
	softer
	- Soil samples of each were collected for
	gradation.
	Additional observation of learning base grade
	Laterial vill be made once the excavation
	is brought to base grade before in the
	floor area.
:	

1	Ge:	strai	h	/ 0310	,)	uby!	Ofte	- ~ S/	1047	٠, ١	Cel	IB		rg	2/2	
	7	-20	7-1	7												
14	115	A	de	ermi	19/1	in	of	the	ne	ed	6	cond	Inci	a	3 mbc	ly)
															de	
															5011	
								v g								
		i i		Í												
	·	,														
		,														
14	ZO	1	Lav	e g	rtc											
1				٠.												
															·	
		,														
		•														
		,														_
		,														
														-		

Rite in the Rain.

BRG: 338°NW (T) POS: 15 T 494273 5248410 ±32.8ft

BRG: 344°N (T) POS: 15 T 494120 5248877 ±3208.8ft

68	Genera	Waste	Subgrade:	Inspection	P51/
	8-14-1	7			12
930	Leave for	r site			1 5
1010	Arrive	at site	. Give	Mark Pa	hl q call
1020	Meet	at subg	rade, Co	nd not tes	pitting to
	confirm	consistan	cy of ol	served ba	se grade
	matori	al i brad	ation of	Frank	soil meets
		de con			
	materia	lwas obse	rved to	e a mir	·mum of
	6 0160	e lase	grade.	,	1 1/
	Test 1	1+ #1 -	Sh corn	er - 3	depth
	- confirm	ed consis	tant bm	un silty	sand graw]
				,	-
	TIANI	#> .		>/ / / /	/
	1051 F1	#2- N	w corner	-3 dept	1 -22,27
	- 5ame.	roma silt	1 sand	1 graves	*
	066/4				a service serv
-(Served	e n /	ceti al	ly alichtly	11.4.4
					the state of the s
	, ,	Instructed			
		se observe			, ,
		consistant	, , ,		
	depth.	(4-151) (44)	3517 910		
	0 0, 1,				. ‡
	Test Pit	43- No	rth-central	- 35' der	4
	Brown si	Hy sand wi	th gravel,	moint, seen	
	finks at	1-2' befor	subgrade.	12" est/le,	- indepleted to
					122

General	Washe	Sulgran	le Inst	pechion	/	1 PgZ/	69
8-14-1	7					- / /	,
Test Pil	#4	- NE	corner	- 35'	deep		
51,447/7	rarving h	aterials e	observe!	1. Same	Grown	silty sand	Toma
as well	916/	sill sand	with gra	rel, sligt	thy high	Ler fires,	more
fine si	and b'	clay ch	unks in	termixed		Ler fines,	
· ·							
Test Pit	#5 -	SE c	orner-	30	leep		
brave	- gilty	sand	, Cah51	stant			
(m)	/		1 /	201	-		
Jest Pit							
brown	silty sai	d Mara	quel, co	h515tant			
C 110 hol			1	4.0	1 415		
Collected For conf	sampl	fram	1.	Corner.	10.400	ite al	1.0
Showing	ton eld	Jr 914	MANION !	60000	al coil	sile par	100
site co			9720	gorier	7/ 30-1	Conallion	
1. ()	29 1 10		-				7.
				3			

Rite in the Rain.

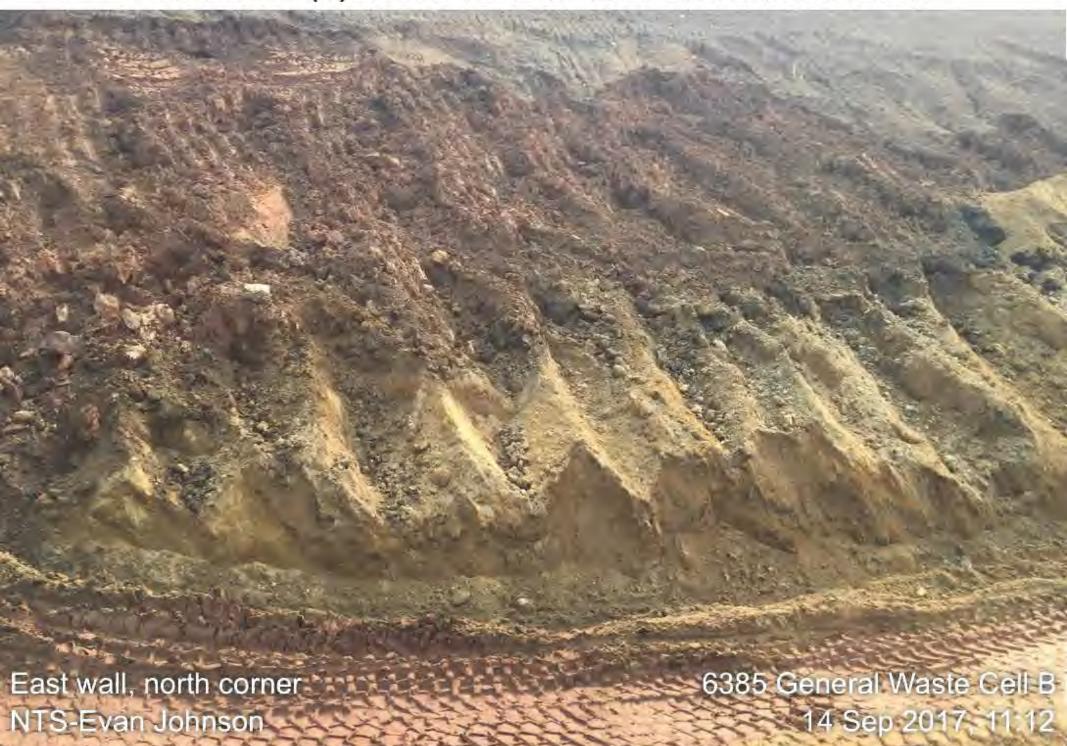
BRG: 291°W (T) POS: 15 T 494182 5248425 ±16.4ft

BRG: 290°W (T) POS: 15 T 494191 5248470 ±16.4ft

BRG: 213°SW (T) POS: 15 T 494227 5248464 ±16.4ft

BRG: 2°N (T) POS: 15 T 494260 5248469 ±16.4ft

BRG: 84°E (T) POS: 15 T 494262 5248421 ±16.4ft


BRG: 125°SE (T) POS: 15 T 494209 5248408 ±32.8ft

BRG: 155°SE (T) POS: 15 T 494276 5248478 ±16.4ft

BRG: 89°E (T) POS: 15 T 494275 5248479 ±16.4ft

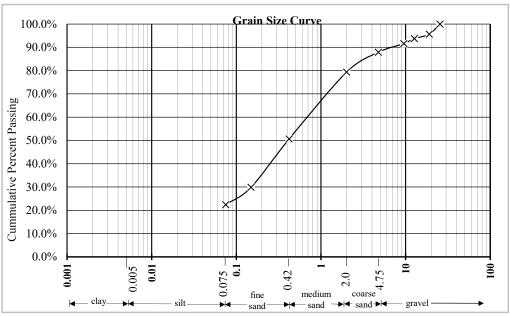
BRG: 324°NW (T) POS: 15 T 494267 5248468 ±16.4ft

BRG: 37°NE (T) POS: 15 T 494272 5248462 ±16.4ft

BRG: 173°S (T) POS: 15 T 494242 5248426 ±16.4ft

BRG: 37°NE (T) POS: 15 T 494151 5248395 ±16.4ft

BRG: 257°W (T) POS: 15 T 494153 5248395 ±16.4ft


Appendix B Laboratory Testing Results

(ASTM D 422)

Northeast Technical Services, Inc. 526 Chestnut Street, PO Box 1142 Virginia, Minnesota 55792 Telephone: (218) 741-4290 nts@netechnical.com

Project	Cell B and C Liner Redesign	Project # 6385EC
Sample Descriptio	n Brown Soil	Lab ID # M562301
Date Reported		COC # 259530
Client	General Waste Disposal & Recov	
Sampled By	Evan Johnson	Lab Technician RRW
Date Collected	8/29/2017	Date Analyzed 8/29/2017
Sample Location	Brown Soil	

Size	Percentage
Gravel	12.1%
Coarse Sand	8.5%
Medium Sand	28.7%
Fine Sand	28.3%
Silt/Clay	22.4%

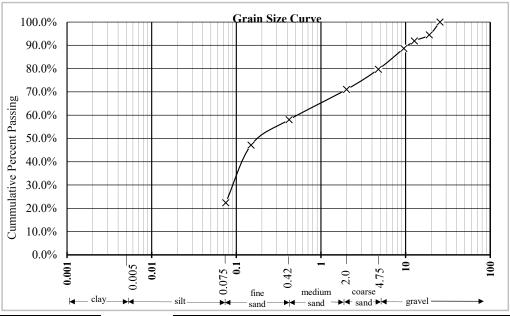
Ciarra Cima	Percent	Coorinations
Sieve Size	Passing	Specifications
1	100%	
3/4	96%	
1/2	94%	
3/8	92%	
#4	88%	
#10	79%	
#40	51.0%	
#100	30.0%	
#200	22.4%	
C	lassification	
USCS	AASHTO	MNDOT
(SC-SM) SILTY, CLAYEY SAND	A-1-b	

Coefficient of Uniformity (Cu)	N/A
Coefficient of Curvature (Cc)	N/A

Additional Information					
Sample Moisture	6.5%				
Permeability					
A44l. a Tilasida	LL	PL	PI		
Atterberg Limits					
Additional Soil Descriptors					

Additional
Comments:

-		


Reviewed: Gina Koski

(ASTM D 422)

Northeast Technical Services, Inc. 526 Chestnut Street, PO Box 1142 Virginia, Minnesota 55792 Telephone: (218) 741-4290 nts@netechnical.com

Project	Cell B and C Liner Redesign	Project # 6385EC
Sample Descriptio	n Red Soil	Lab ID # M562302
Date Reported		COC # 259530
Client	General Waste Disposal & Recov	
Sampled By	Evan Johnson	Lab Technician RRW
Date Collected	8/29/2017	Date Analyzed 8/29/2017
Sample Location	Red Soil	

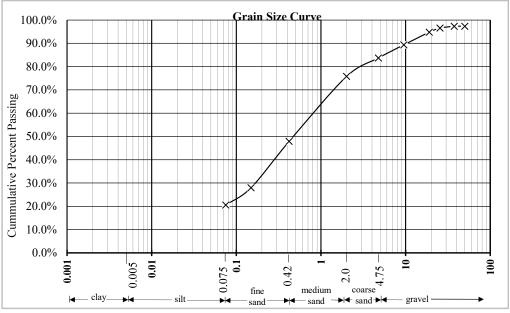
Size	Percentage
Gravel	20.3%
Coarse Sand	8.7%
Medium Sand	13.0%
Fine Sand	35.6%
Silt/Clay	22.4%

Ciarra Cina	Percent	Cracifications	
Sieve Size	Passing	Specifications	
1	100%		
3/4	94%		
1/2	92%		
3/8	89%		
#4	80%		
#10	71%		
#40	58.0%		
#100	47.0%		
#200	22.4%		
C	 assification		
USCS	AASHTO	MNDOT	
(SC-SM) SILTY,			
CLAYEY SAND	A-1-b		

Coefficient of Uniformity (Cu)	N/A
Coefficient of Curvature (Cc)	N/A

Additional Information			
Sample Moisture	14.4%		
Permeability			
A 44 - 11 - 11 - 1 - 14 -	LL	PL	PI
Atterberg Limits			
Additional Soil Descriptors			

Additional Comments:


Reviewed: Gina Koski

(ASTM D 422)

Northeast Technical Services, Inc. 526 Chestnut Street, PO Box 1142 Virginia, Minnesota 55792 Telephone: (218) 741-4290 nts@netechnical.com

Project	Cell B and C Liner Redesign	Project # 6385EC	
Sample Descriptio	n Test Pit #4	Lab ID # M563627	
Date Reported		COC # 259567	
Client	Cell B and C Liner Redesign	<u> </u>	
Sampled By	EJ	Lab Technician RW	
Date Collected	9/14/2017	Date Analyzed 9/14/2017	
Sample Location			

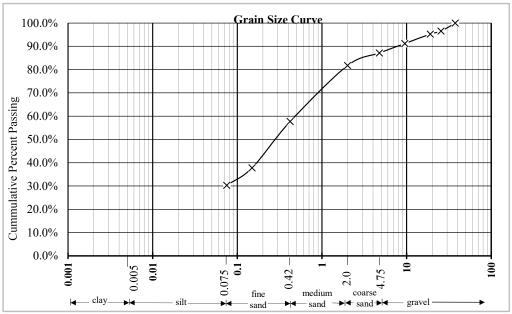
Size	Percentage
Gravel	16.3%
Coarse Sand	7.9%
Medium Sand	27.9%
Fine Sand	27.3%
Silt/Clay	20.6%

Sieve Size	Percent	Specifications
Sieve Size	Passing	Specifications
2	97%	
1 1/2	97%	
1	97%	
3/4	95%	
3/8	89%	
#4	84%	
#10	76.0%	
#40	48.0%	
#100	28.0%	
#200	20.6%	
C	lassification	
USCS	AASHTO	MNDOT
(SC-SM) SILTY, CLAYEY SAND WITH GRAVEL	A-1-b	

Coefficient of Uniformity (Cu)	N/A
Coefficient of Curvature (Cc)	N/A

Additional Information			
Sample Moisture	8.8%		
Permeability			
Attaulana Limita	LL	PL	PI
Atterberg Limits			
Additional Soil Descriptors			

Additional Comments:


Reviewed:	Casey Rogers	

(ASTM D 422)

Northeast Technical Services, Inc. 526 Chestnut Street, PO Box 1142 Virginia, Minnesota 55792 Telephone: (218) 741-4290 nts@netechnical.com

Project	Cell B and C Liner Redesign	Project # 6385EC
Sample Descriptio	n Test Pit #1	Lab ID # M563628
Date Reported		COC # 259567
Client	Cell B and C Liner Redesign	
Sampled By		Lab Technician RRW
Date Collected	9/14/2017	Date Analyzed 9/14/2017
Sample Location	Test Pit #1	

Size	Percentage
Gravel	12.9%
Coarse Sand	5.4%
Medium Sand	24.1%
Fine Sand	27.4%
Silt/Clay	30.3%

Ciarra Cira	Percent	Cuasifications
Sieve Size	Passing	Specifications
2	100%	
1 1/2	100%	
1	97%	
3/4	95%	
3/8	91%	
#4	87%	
#10	82.0%	
#40	58.0%	
#100	38.0%	
#200	30.3%	
C	lassification	
USCS	AASHTO	MNDOT
USCS	AASHIU	MINDOI
(SC-SM) SILTY, CLAYEY SAND	A-2	

Coefficient of Uniformity (Cu)	N/A	
Coefficient of Curvature (Cc)	N/A	

Additional Information					
Sample Moisture	10.5%				
Permeability					
Atterberg Limits	LL	PL	PI		
Additional Soil Descriptors					

Additional Comments:

1			
-			

Reviewed:

Appendix C 2013 Geotechnical Assessment

Appendix information removed due to duplication in Appendix A of this document (CCR Stability Certification) Evan Johnson, PE - Oct. 4, 2017

Em 2/mar 10-4-17